skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Utilizing Neural Networks to Resolve Individual Bats and Improve Automated Counts
Accurate population counts are essential for understanding the status of species and for researchers studying various phenomena including monitoring the relationship between environmental stresses and the spread of disease within populations. Both small roosts and large colonies of bats provide challenges when attempting to determine an accurate population count. Recently, there have been a number of new video analysis software applications, that are available on the internet, which can be used to provide population counts. When software-based counts are compared with manual counts, the software provides counts that are substantially less labor intensive, determined substantially more quickly, and have the potential to be more accurate. This short paper discusses the use of neural networks to determine the number of bats that there are in a region when multiple bats may overlap. The work discussed in this manuscript demonstrates that the counts of multiple overlapping bats can be improved using trained neural networks. This is a critical improvement for providing accurate counts in high density videos. This manuscript contains the biological motivations, and a brief overview of how artificial intelligence is being implemented. The results discussed compare the accuracy values of neural networks for a few case studies including cross-comparisons of data trained on different video types and for different animals which can have accuracy values above 90 % for comparable video types. Finally, the generation and use of synthetic images, to increase the amount of data in a training set, is also discussed, which resulted in a trained neural network that produced an accuracy value of 80% on 12 unbiased categories.  more » « less
Award ID(s):
1916850
PAR ID:
10468475
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Vuong, Son; Hwang, Jenq-Neng
Publisher / Repository:
IEEE
Date Published:
Edition / Version:
1
ISBN:
979-8-3503-3761-7
Page Range / eLocation ID:
0112 to 0119
Subject(s) / Keyword(s):
artificial intelligence, bioinformatics, computer vision, machine learning, neural networks
Format(s):
Medium: X Size: 2MB Other: pdf
Size(s):
2MB
Location:
Seattle, WA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Sharma, Lalit Kumar (Ed.)
    One of the biggest challenges with species conservation is collecting accurate and efficient information on population sizes, especially from species that are difficult to count. Bats worldwide are declining due to disease, habitat destruction, and climate change, and many species lack reliable population information to guide management decisions. Current approaches for estimating population sizes of bats in densely occupied colonies are time-intensive, may negatively impact the population due to disturbance, and/or have low accuracy. Research-based video tracking options are rarely used by conservation or management agencies for animal counting due to the perceived training and elevated operating costs. In this paper, we present BatCount, a free software program created in direct consultation with end-users designed to automatically count bats emerging from cave roosts (historical populations 20,000–250,000) with a streamlined and user-friendly interface. We report on the software package and provide performance metrics for different recording habitat conditions. Our analysis demonstrates that BatCount is an efficient and reliable option for counting bats in flight, with performance hundreds of times faster than manual counting, and has important implications for range- and species-wide population monitoring. Furthermore, this software can be extended to count any organisms moving across a camera including birds, mammals, fish or insects. 
    more » « less
  2. The accurate identification of wireless devices is critical for enabling automated network access monitoring and authenticated data communication in large-scale networks; e.g., IoT networks. RF fingerprinting has emerged as a potential solution for device identification by leveraging the transmitter unique manufacturing impairments of the RF components. Although deep learning is proven efficient in classifying devices based on the hardware impairments, trained models perform poorly due to channel variations. That is, although training and testing neural networks using data generated during the same period achieve reliable classification, testing them on data generated at different times degrades the accuracy substantially. To the best of our knowledge, we are the first to propose to leverage MIMO capabilities to mitigate the channel effect and provide a channelresilient device classification. For the proposed technique we show that, for Rayleigh channels, blind partial channel estimation enabled by MIMO increases the testing accuracy by up to 40% when the models are trained and tested over the same channel, and by up to 60% when the models are tested on a channel that is different from that used for training. 
    more » « less
  3. Cymbalyuk, Gennady S. (Ed.)
    Artificial neural networks are often interpreted as abstract models of biological neuronal networks, but they are typically trained using the biologically unrealistic backpropagation algorithm and its variants. Predictive coding has been proposed as a potentially more biologically realistic alternative to backpropagation for training neural networks. This manuscript reviews and extends recent work on the mathematical relationship between predictive coding and backpropagation for training feedforward artificial neural networks on supervised learning tasks. Implications of these results for the interpretation of predictive coding and deep neural networks as models of biological learning are discussed along with a repository of functions, Torch2PC, for performing predictive coding with PyTorch neural network models. 
    more » « less
  4. ABSTRACT Traditional software reliability growth models (SRGM) characterize defect discovery with the Non‐Homogeneous Poisson Process (NHPP) as a function of testing time or effort. More recently, covariate NHPP SRGM models have substantially improved tracking and prediction of the defect discovery process by explicitly incorporating discrete multivariate time series on the amount of each underlying testing activity performed in successive intervals. Both classes of NHPP models with and without covariates are parametric in nature, imposing assumptions on the defect discovery process, and, while neural networks have been applied to SRGM models without covariates, no such studies have been applied in the context of covariate SRGM models. Therefore, this paper assesses the effectiveness of neural networks in predicting the software defect discovery process, incorporating covariates. Three types of neural networks are considered, including (i) recurrent neural networks (RNNs), (ii) long short‐term memory (LSTM), and (iii) gated recurrent unit (GRU), which are then compared with covariate models to validate tracking and predictive accuracy. Our results suggest that GRU achieved better overall goodness‐of‐fit, such as approximately 3.22 and 1.10 times smaller predictive mean square error, and 5.33 and 1.22 times smaller predictive ratio risk in DS1G and DS2G data sets, respectively, compared to covariate models when of the data is used for training. Moreover, to provide an objective comparison, three different proportions for training data splits were employed to illustrate the advancements between the top‐performing covariate NHPP model and the neural network, in which GRU illustrated a better performance over most of the scenarios. Thus, the neural network model with gated recurrent units may be a suitable alternative to track and predict the number of defects based on covariates associated with the software testing process. 
    more » « less
  5. Unstructured neural network pruning is an effective technique that can significantly reduce theoretical model size, computation demand and energy consumption of large neural networks without compromising accuracy. However, a number of fundamental questions about pruning are not answered yet. For example, do the pruned neural networks contain the same representations as the original network? Is pruning a compression or evolution process? Does pruning only work on trained neural networks? What is the role and value of the uncovered sparsity structure? In this paper, we strive to answer these questions by analyzing three unstructured pruning methods (magnitude based pruning, post-pruning re-initialization, and random sparse initialization). We conduct extensive experiments using the Singular Vector Canonical Correlation Analysis (SVCCA) tool to study and contrast layer representations of pruned and original ResNet, VGG, and ConvNet models. We have several interesting observations: 1) Pruned neural network models evolve to substantially different representations while still maintaining similar accuracy. 2) Initialized sparse models can achieve reasonably good accuracy compared to well engineered pruning methods. 3) Sparsity structures discovered by pruning models are not inherently important or useful. 
    more » « less