skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chromonic liquid crystals and packing configurations of bacteriophage viruses
We study equilibrium configurations of hexagonal columnar liquid crystals in the context of characterizing packing structures of bacteriophage viruses in a protein capsid. These are viruses that infect bacteria and are currently the focus of intense research efforts, with the goal of finding new therapies for bacteria-resistant antibiotics. The energy that we propose consists of the Oseen–Frank free energy of nematic liquid crystals that penalizes bending of the columnar directions, in addition to the cross-sectional elastic energy accounting for distortions of the transverse hexagonal structure; we also consider the isotropic contribution of the core and the energy of the unknown interface between the outer ordered region of the capsid and the inner disordered core. The problem becomes of free boundary type, with constraints. We show that the concentric, azimuthal, spool-like configuration is the absolute minimizer. Moreover, we present examples of toroidal structures formed by DNA in free solution and compare them with the analogous ones occurring in experiments with other types of lyotropic liquid crystals, such as food dyes and additives. This article is part of the theme issue ‘Topics in mathematical design of complex materials’.  more » « less
Award ID(s):
1817156 1934568
PAR ID:
10300383
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
379
Issue:
2201
ISSN:
1364-503X
Page Range / eLocation ID:
20200111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unraveling the mechanisms of packing of DNA inside viral capsids is of fundamental importance to understanding the spread of viruses. It could also help develop new applications to targeted drug delivery devices for a large range of therapies. In this article, we present a robust, predictive mathematical model and its numerical implementation to aid the study and design of bacteriophage viruses for application purposes. Exploiting the analogies between the columnar hexagonal chromonic phases of encapsidated viral DNA and chromonic aggregates formed by plank-shaped molecular compounds, we develop a first-principles effective mechanical model of DNA packing in a viral capsid. The proposed expression of the packing energy, which combines relevant aspects of the liquid crystal theory, is developed from the model of hexagonal columnar phases, together with that describing configurations of polymeric liquid crystals. The method also outlines a parameter selection strategy that uses available data for a collection of viruses, aimed at applications to viral design. The outcome of the work is a mathematical model and its numerical algorithm, based on the method of finite elements, and computer simulations to identify and label the ordered and disordered regions of the capsid and calculate the inner pressure. It also presents the tools for the local reconstruction of the DNA “scaffolding” and the center curve of the filament within the capsid. 
    more » « less
  2. We study equilibrium configurations of double-stranded DNA in a cylindrical viral capsid. The state of the encapsidated DNA consists of a disordered inner core enclosed by an ordered outer region, next to the capsid wall. The DNA configuration is described by a unit helical vector field, tangent to an associated centre curve, passing through properly selected locations. We postulate an expression for the energy of the encapsulated DNA based on that of columnar chromonic liquid crystals. A thorough analysis of the Euler–Lagrange equations yields multiple solutions. We demonstrate that there is a trivial, non-helical solution, together with two solutions with non-zero helicity of opposite sign. Using bifurcation analysis, we derive the conditions for local stability and determine when the preferred coiling state is helical. The bifurcation parameters are the ratio of the twist versus the bend moduli of DNA and the ratio between the sizes of the ordered and the disordered regions. 
    more » « less
  3. Recently, a large family of at least 14 discotic liquid crystals was discovered that are exceptions to the conventional paradigm that discotic mesogens tend to feature long, flexible tails on their periphery. To understand why these materials are liquid crystals, as well as the structural determinants of discotic phase behavior, we studied a group of closely related small tail-free disk-like molecules, including both mesogenic and non-mesogenic compounds differing only in the position of a single fluorine substituent. The rigidity and structural simplicity of these molecules make them well suited to for study by large, fully all-atom simulations. Using a combination of static and dynamic metrics, we were able to identify several key features of the columnar mesophase and, thereby, conclusively identify a columnar liquid crystalline mesophase present in a subset of our systems. Our simulations feature molecules hopping between columns in the columnar mesophase and distinctive molecular rotations in 60° steps about the columnar axis. The ability to create and characterize columnar mesophases in silico provides a potent tool for untangling the structural determinants of liquid crystalline behavior in these and other tail-free discotic liquid crystals. 
    more » « less
  4. Abstract Giant viruses are a large group of viruses that infect many eukaryotes. Although components that do not obey the overall icosahedral symmetry of their capsids have been observed and found to play critical roles in the viral life cycles, identities and high-resolution structures of these components remain unknown. Here, by determining a near-atomic-resolution, five-fold averaged structure of Paramecium bursaria chlorella virus 1, we unexpectedly found the viral capsid possesses up to five major capsid protein variants and a penton protein variant. These variants create varied capsid microenvironments for the associations of fibers, a vesicle, and previously unresolved minor capsid proteins. Our structure reveals the identities and atomic models of the capsid components that do not obey the overall icosahedral symmetry and leads to a model for how these components are assembled and initiate capsid assembly, and this model might be applicable to many other giant viruses. 
    more » « less
  5. Many icosahedral viruses assemble proteinaceous precursors called proheads or procapsids. Proheads are metastable structures that undergo a profound structural transition known as expansion that transforms an immature unexpanded head into a mature genome-packaging head. Bacteriophage T4 is a model virus, well studied genetically and biochemically, but its structure determination has been challenging because of its large size and unusually prolate-shaped, ∼1,200-Å-long and ∼860-Å-wide capsid. Here, we report the cryogenic electron microscopy (cryo-EM) structures of T4 capsid in both of its major conformational states: unexpanded at a resolution of 5.1 Å and expanded at a resolution of 3.4 Å. These are among the largest structures deposited in Protein Data Bank to date and provide insights into virus assembly, head length determination, and shell expansion. First, the structures illustrate major domain movements and ∼70% additional gain in inner capsid volume, an essential transformation to contain the entire viral genome. Second, intricate intracapsomer interactions involving a unique insertion domain dramatically change, allowing the capsid subunits to rotate and twist while the capsomers remain fastened at quasi-threefold axes. Third, high-affinity binding sites emerge for a capsid decoration protein that clamps adjacent capsomers, imparting extraordinary structural stability. Fourth, subtle conformational changes at capsomers’ periphery modulate intercapsomer angles between capsomer planes that control capsid length. Finally, conformational changes were observed at the symmetry-mismatched portal vertex, which might be involved in triggering head expansion. These analyses illustrate how small changes in local capsid subunit interactions lead to profound shifts in viral capsid morphology, stability, and volume. 
    more » « less