null
(Ed.)
One of the primary tasks in neuroimaging is to simplify spatiotemporal scans of the brain (i.e., fMRI scans) by partitioning the voxels into a set of functional brain regions. An emerging line of research utilizes multiple fMRI scans, from a group of subjects, to calculate a single group consensus functional partition. This consensus-based approach is promising as it allows the model to improve the signalto-noise ratio in the data. However, existing approaches are primarily non-parametric which poses problems when new samples are introduced. Furthermore, most existing approaches calculate a single partition for multiple subjects which fails to account for the functional and anatomical variability between different subjects. In this work, we study the problem of group-cohesive functional brain region discovery where the goal is to use information from a group of subjects to learn “group-cohesive” but individualized brain partitions for multiple fMRI scans. This problem is challenging since neuroimaging datasets are usually quite small and noisy. We introduce a novel deep parametric model based upon graph convolution, called the Brain Region Extraction Network (BREN). By treating the fMRI data as a graph, we are able to integrate information from neighboring voxels during brain region discovery which helps reduce noise for each subject. Our model is trained with a Siamese architecture to encourage partitions that are group-cohesive. Experiments on both synthetic and real-world data show the effectiveness of our proposed approach.
more »
« less
An official website of the United States government

