skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching through functional space reveals distributed visual, auditory, and semantic coding in the human brain
The extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model, as well as object representations, are more widely distributed across the brain than previously acknowledged and that functional searchlight can improve model-based similarity and decoding accuracy. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.  more » « less
Award ID(s):
1839308
PAR ID:
10300499
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Jbabdi, Saad
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
16
Issue:
12
ISSN:
1553-7358
Page Range / eLocation ID:
e1008457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the primary tasks in neuroimaging is to simplify spatiotemporal scans of the brain (i.e., fMRI scans) by partitioning the voxels into a set of functional brain regions. An emerging line of research utilizes multiple fMRI scans, from a group of subjects, to calculate a single group consensus functional partition. This consensus-based approach is promising as it allows the model to improve the signalto-noise ratio in the data. However, existing approaches are primarily non-parametric which poses problems when new samples are introduced. Furthermore, most existing approaches calculate a single partition for multiple subjects which fails to account for the functional and anatomical variability between different subjects. In this work, we study the problem of group-cohesive functional brain region discovery where the goal is to use information from a group of subjects to learn “group-cohesive” but individualized brain partitions for multiple fMRI scans. This problem is challenging since neuroimaging datasets are usually quite small and noisy. We introduce a novel deep parametric model based upon graph convolution, called the Brain Region Extraction Network (BREN). By treating the fMRI data as a graph, we are able to integrate information from neighboring voxels during brain region discovery which helps reduce noise for each subject. Our model is trained with a Siamese architecture to encourage partitions that are group-cohesive. Experiments on both synthetic and real-world data show the effectiveness of our proposed approach. 
    more » « less
  2. Abstract Quantifying the association between components of multivariate random curves is of general interest and is a ubiquitous and basic problem that can be addressed with functional data analysis. An important application is the problem of assessing functional connectivity based on functional magnetic resonance imaging (fMRI), where one aims to determine the similarity of fMRI time courses that are recorded on anatomically separated brain regions. In the functional brain connectivity literature, the static temporal Pearson correlation has been the prevailing measure for functional connectivity. However, recent research has revealed temporally changing patterns of functional connectivity, leading to the study of dynamic functional connectivity. This motivates new similarity measures for pairs of random curves that reflect the dynamic features of functional similarity. Specifically, we introduce gradient synchronization measures in a general setting. These similarity measures are based on the concordance and discordance of the gradients between paired smooth random functions. Asymptotic normality of the proposed estimates is obtained under regularity conditions. We illustrate the proposed synchronization measures via simulations and an application to resting-state fMRI signals from the Alzheimer’s Disease Neuroimaging Initiative and they are found to improve discrimination between subjects with different disease status. 
    more » « less
  3. Abstract The auditory system comprises multiple subcortical brain structures that process and refine incoming acoustic signals along the primary auditory pathway. Due to technical limitations of imaging small structures deep inside the brain, most of our knowledge of the subcortical auditory system is based on research in animal models using invasive methodologies. Advances in ultrahigh-field functional magnetic resonance imaging (fMRI) acquisition have enabled novel noninvasive investigations of the human auditory subcortex, including fundamental features of auditory representation such as tonotopy and periodotopy. However, functional connectivity across subcortical networks is still underexplored in humans, with ongoing development of related methods. Traditionally, functional connectivity is estimated from fMRI data with full correlation matrices. However, partial correlations reveal the relationship between two regions after removing the effects of all other regions, reflecting more direct connectivity. Partial correlation analysis is particularly promising in the ascending auditory system, where sensory information is passed in an obligatory manner, from nucleus to nucleus up the primary auditory pathway, providing redundant but also increasingly abstract representations of auditory stimuli. While most existing methods for learning conditional dependency structures based on partial correlations assume independently and identically Gaussian distributed data, fMRI data exhibit significant deviations from Gaussianity as well as high-temporal autocorrelation. In this paper, we developed an autoregressive matrix-Gaussian copula graphical model (ARMGCGM) approach to estimate the partial correlations and thereby infer the functional connectivity patterns within the auditory system while appropriately accounting for autocorrelations between successive fMRI scans. Our results show strong positive partial correlations between successive structures in the primary auditory pathway on each side (left and right), including between auditory midbrain and thalamus, and between primary and associative auditory cortex. These results are highly stable when splitting the data in halves according to the acquisition schemes and computing partial correlations separately for each half of the data, as well as across cross-validation folds. In contrast, full correlation-based analysis identified a rich network of interconnectivity that was not specific to adjacent nodes along the pathway. Overall, our results demonstrate that unique functional connectivity patterns along the auditory pathway are recoverable using novel connectivity approaches and that our connectivity methods are reliable across multiple acquisitions. 
    more » « less
  4. Kay, Kendrick (Ed.)
    A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating – in a highly empirically constrained manner – the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region’s unique intrinsic “connectivity fingerprint” was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain’s intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses. 
    more » « less
  5. Abstract External sources of inspiration can promote the discovery of new ideas as designers ideate on a design task. Data-driven techniques can increasingly enable the retrieval of inspirational stimuli based on nontext-based representations, beyond semantic features of stimuli. However, there is a lack of fundamental understanding regarding how humans evaluate similarity between non-semantic design stimuli (e.g., visual). Toward this aim, this work examines human-evaluated and computationally derived representations of visual and functional similarities of 3D-model parts. A study was conducted where participants (n=36) assessed triplet ratings of parts and categorized these parts into groups. Similarity is defined by distances within embedding spaces constructed using triplet ratings and deep-learning methods, representing human and computational representations. Distances between stimuli that are grouped together (or not) are determined to understand how various methods and criteria used to define non-text-based similarity align with perceptions of 'near' and 'far'. Distinct boundaries in computed distances separating stimuli that are 'too far' were observed, which include farther stimuli when modeling visual vs. functional attributes. 
    more » « less