skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engaging Audiences with Behind-the-Scenes Science Media
This study explores the potential benefits of different formats of behind-the-scenes content for educational science media using the Differential Susceptibility to Media Effects Model. We also consider potential gender differences in response to the behind-the-scenes content and the influence of using an on-camera host versus a solely voiced-over production. The results suggest that professionally produced behind-the-scenes content may help broaden participation with science media; that is, we found that these types of behind-the-scenes content increase engagement with science video among women who score lower in science curiosity.  more » « less
Award ID(s):
1810990 1811019
PAR ID:
10300689
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Broadcasting & Electronic Media
ISSN:
0883-8151
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Information manipulation is widespread in today’s media environment. Online networks have disrupted the gatekeeping role of traditional media by allowing various actors to influence the public agenda; they have also allowed automated accounts (or bots) to blend with human activity in the flow of information. Here, we assess the impact that bots had on the dissemination of content during two contentious political events that evolved in real time on social media. We focus on events of heightened political tension because they are particularly susceptible to information campaigns designed to mislead or exacerbate conflict. We compare the visibility of bots with human accounts, verified accounts, and mainstream news outlets. Our analyses combine millions of posts from a popular microblogging platform with web-tracking data collected from two different countries and timeframes. We employ tools from network science, natural language processing, and machine learning to analyze the diffusion structure, the content of the messages diffused, and the actors behind those messages as the political events unfolded. We show that verified accounts are significantly more visible than unverified bots in the coverage of the events but also that bots attract more attention than human accounts. Our findings highlight that social media and the web are very different news ecosystems in terms of prevalent news sources and that both humans and bots contribute to generate discrepancy in news visibility with their activity. 
    more » « less
  2. Diffraction-limited optical imaging through scattering media has the potential to transform many applications such as airborne and space-based imaging (through the atmosphere), bioimaging (through skin and human tissue), and fiber-based imaging (through fiber bundles). Existing wavefront shaping methods can image through scattering media and other obscurants by optically correcting wavefront aberrations using high-resolution spatial light modulators—but these methods generally require (i) guidestars, (ii) controlled illumination, (iii) point scanning, and/or (iv) statics scenes and aberrations. We propose neural wavefront shaping (NeuWS), a scanning-free wavefront shaping technique that integrates maximum likelihood estimation, measurement modulation, and neural signal representations to reconstruct diffraction-limited images through strong static and dynamic scattering media without guidestars, sparse targets, controlled illumination, nor specialized image sensors. We experimentally demonstrate guidestar-free, wide field-of-view, high-resolution, diffraction-limited imaging of extended, nonsparse, and static/dynamic scenes captured through static/dynamic aberrations. 
    more » « less
  3. null (Ed.)
    Science and health journalists have incorporated digital media as a source for their daily news production process, but little is known about the potential impacts of using digital media data to inform the news production process in the context of a global pandemic, where information is rapidly changing. During the COVID-19 pandemic, families have struggled to ensure economic stability and good health as well as their children’s learning and development. The Child Trends News Service sought to broaden access to science-based information to support families during the pandemic through television news, testing whether digital media can be used to understand parents’ concerns, misconceptions, and needs in real time. This article presents that digital media data can supplement traditional ways of conducting audience research and help tailor relevant content for families to garner an average of 90 million views per report. 
    more » « less
  4. People are increasingly exposed to science and political information from social media. One consequence is that these sites play host to “alternative influencers,” who spread misinformation. However, content posted by alternative influencers on different social media platforms is unlikely to be homogenous. Our study uses computational methods to investigate how dimensions we refer to as audience and channel of social media platforms influence emotion and topics in content posted by “alternative influencers” on different platforms. Using COVID-19 as an example, we find that alternative influencers’ content contained more anger and fear words on Facebook and Twitter compared to YouTube. We also found that these actors discussed substantively different topics in their COVID-19 content on YouTube compared to Twitter and Facebook. With these findings, we discuss how the audience and channel of different social media platforms affect alternative influencers’ ability to spread misinformation online. 
    more » « less
  5. Augmented Reality (AR) enhances the real world by integrating virtual content, yet ensuring the quality, usability, and safety of AR experiences presents significant challenges. Could Vision-Language Models (VLMs) offer a solution for the automated evaluation of AR-generated scenes? Could Vision-Language Models (VLMs) offer a solution for the automated evaluation of AR-generated scenes? In this study, we evaluate the capabilities of three state-of-the-art commercial VLMs -- GPT, Gemini, and Claude -- in identifying and describing AR scenes. For this purpose, we use DiverseAR, the first AR dataset specifically designed to assess VLMs' ability to analyze virtual content across a wide range of AR scene complexities. Our findings demonstrate that VLMs are generally capable of perceiving and describing AR scenes, achieving a True Positive Rate (TPR) of up to 93% for perception and 71% for description. While they excel at identifying obvious virtual objects, such as a glowing apple, they struggle when faced with seamlessly integrated content, such as a virtual pot with realistic shadows. Our results highlight both the strengths and the limitations of VLMs in understanding AR scenarios. We identify key factors affecting VLM performance, including virtual content placement, rendering quality, and physical plausibility. This study underscores the potential of VLMs as tools for evaluating the quality of AR experiences. 
    more » « less