The fidelity-based smooth min-relative entropy is a distinguishability measure that has appeared in a variety of contexts in prior work on quantum information, including resource theories like thermodynamics and coherence. Here we provide a comprehensive study of this quantity. First we prove that it satisfies several basic properties, including the data-processing inequality. We also establish connections between the fidelity-based smooth min-relative entropy and other widely used information-theoretic quantities, including smooth min-relative entropy and smooth sandwiched Rényi relative entropy, of which the sandwiched Rényi relative entropy and smooth max-relative entropy are special cases. After that, we use these connections to establish the second-order asymptotics of the fidelity-based smooth min-relative entropy and all smooth sandwiched Rényi relative entropies, finding that the first-order term is the quantum relative entropy and the second-order term involves the quantum relative entropy variance. Utilizing the properties derived, we also show how the fidelity-based smooth min-relative entropy provides one-shot bounds for operational tasks in general resource theories in which the target state is mixed, with a particular example being randomness distillation. The above observations then lead to second-order expansions of the upper bounds on distillable randomness, as well as the precise second-order asymptotics of the distillable randomness of particular classical-quantum states. Finally, we establish semi-definite programs for smooth max-relative entropy and smooth conditional min-entropy, as well as a bilinear program for the fidelity-based smooth min-relative entropy, which we subsequently use to explore the tightness of a bound relating the last to the first.
more »
« less
Optimized Quantum F-Divergences
The quantum relative entropy is a measure of the distinguishability of two quantum states, and it is a unifying concept in quantum information theory: many information measures such as entropy, conditional entropy, mutual information, and entanglement measures can be realized from it. As such, there has been broad interest in generalizing the notion to further understand its most basic properties, one of which is the data processing inequality. The quantum f-divergence of Petz is one generalization of the quantum relative entropy, and it also leads to other relative entropies, such as the Petz--Renyi relative entropies. In this contribution, I introduce the optimized quantum f-divergence as a related generalization of quantum relative entropy. I prove that it satisfies the data processing inequality, and the method of proof relies upon the operator Jensen inequality, similar to Petz's original approach. Interestingly, the sandwiched Renyi relative entropies are particular examples of the optimized f-divergence. Thus, one benefit of this approach is that there is now a single, unified approach for establishing the data processing inequality for both the Petz--Renyi and sandwiched Renyi relative entropies, for the full range of parameters for which it is known to hold.
more »
« less
- Award ID(s):
- 1714215
- PAR ID:
- 10300707
- Date Published:
- Journal Name:
- Proceedings of the 2018 IEEE International Symposium on Information Theory
- Page Range / eLocation ID:
- 2481 to 2485
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)It has been shown that the α − z Renyi relative entropy satisfies the Data Processing Inequality (DPI) for a certain range of α’s and z’s. Moreover, the range is completely characterized by Zhang in ‘20. We prove necessary and algebraically sufficient conditions to saturate the DPI for the α− z Renyi relative entropy whenever 1 < α ≤ 2 and α/2 ≤ z ≤ α. Moreover, these conditions coincide whenever α = z.more » « less
-
It is well-known that any quantum channel E satisfies the data processing inequality (DPI), with respect to various divergences, e.g., quantum χ κ 2 divergences and quantum relative entropy. More specifically, the data processing inequality states that the divergence between two arbitrary quantum states ρ and σ does not increase under the action of any quantum channel E . For a fixed channel E and a state σ , the divergence between output states E ( ρ ) and E ( σ ) might be strictly smaller than the divergence between input states ρ and σ , which is characterized by the strong data processing inequality (SDPI). Among various input states ρ , the largest value of the rate of contraction is known as the SDPI constant. An important and widely studied property for classical channels is that SDPI constants tensorize. In this paper, we extend the tensorization property to the quantum regime: we establish the tensorization of SDPIs for the quantum χ κ 1 / 2 2 divergence for arbitrary quantum channels and also for a family of χ κ 2 divergences (with κ ≥ κ 1 / 2 ) for arbitrary quantum-classical channels.more » « less
-
A<sc>bstract</sc> We propose a new formula for computing holographic Renyi entropies in the presence of multiple extremal surfaces. Our proposal is based on computing the wave function in the basis of fixed-area states and assuming a diagonal approximation for the Renyi entropy. For Renyi indexn≥ 1, our proposal agrees with the existing cosmic brane proposal for holographic Renyi entropy. Forn <1, however, our proposal predicts a new phase with leading order (in Newton’s constantG) corrections to the cosmic brane proposal, even far from entanglement phase transitions and when bulk quantum corrections are unimportant. Recast in terms of optimization over fixed-area states, the difference between the two proposals can be understood to come from the order of optimization: forn <1, the cosmic brane proposal is a minimax prescription whereas our proposal is a maximin prescription. We demonstrate the presence of such leading order corrections using illustrative examples. In particular, our proposal reproduces existing results in the literature for the PSSY model and high-energy eigenstates, providing a universal explanation for previously found leading order corrections to then <1 Renyi entropies.more » « less
-
Holevo's just-as-good fidelity is a similarity measure for quantum states that has found several applications. One of its critical properties is that it obeys a data processing inequality: the measure does not decrease under the action of a quantum channel on the underlying states. In this paper, I prove a refinement of this data processing inequality that includes an additional term related to recoverability. That is, if the increase in the measure is small after the action of a partial trace, then one of the states can be nearly recovered by the Petz recovery channel, while the other state is perfectly recovered by the same channel. The refinement is given in terms of the trace distance of one of the states to its recovered version and also depends on the minimum eigenvalue of the other state. As such, the refinement is universal, in the sense that the recovery channel depends only on one of the states, and it is explicit, given by the Petz recovery channel. The appendix contains a generalization of the aforementioned result to arbitrary quantum channels.more » « less
An official website of the United States government

