skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recoverability for Holevo's Just-as-Good Fidelity
Holevo's just-as-good fidelity is a similarity measure for quantum states that has found several applications. One of its critical properties is that it obeys a data processing inequality: the measure does not decrease under the action of a quantum channel on the underlying states. In this paper, I prove a refinement of this data processing inequality that includes an additional term related to recoverability. That is, if the increase in the measure is small after the action of a partial trace, then one of the states can be nearly recovered by the Petz recovery channel, while the other state is perfectly recovered by the same channel. The refinement is given in terms of the trace distance of one of the states to its recovered version and also depends on the minimum eigenvalue of the other state. As such, the refinement is universal, in the sense that the recovery channel depends only on one of the states, and it is explicit, given by the Petz recovery channel. The appendix contains a generalization of the aforementioned result to arbitrary quantum channels.  more » « less
Award ID(s):
1714215
PAR ID:
10104449
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 2018 International Symposium on Information Theory
Page Range / eLocation ID:
2331 to 2335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The quantum relative entropy is a measure of the distinguishability of two quantum states, and it is a unifying concept in quantum information theory: many information measures such as entropy, conditional entropy, mutual information, and entanglement measures can be realized from it. As such, there has been broad interest in generalizing the notion to further understand its most basic properties, one of which is the data processing inequality. The quantum f-divergence of Petz is one generalization of the quantum relative entropy, and it also leads to other relative entropies, such as the Petz--Renyi relative entropies. In this contribution, I introduce the optimized quantum f-divergence as a related generalization of quantum relative entropy. I prove that it satisfies the data processing inequality, and the method of proof relies upon the operator Jensen inequality, similar to Petz's original approach. Interestingly, the sandwiched Renyi relative entropies are particular examples of the optimized f-divergence. Thus, one benefit of this approach is that there is now a single, unified approach for establishing the data processing inequality for both the Petz--Renyi and sandwiched Renyi relative entropies, for the full range of parameters for which it is known to hold. 
    more » « less
  2. It is well-known that any quantum channel E satisfies the data processing inequality (DPI), with respect to various divergences, e.g., quantum χ κ 2 divergences and quantum relative entropy. More specifically, the data processing inequality states that the divergence between two arbitrary quantum states ρ and σ does not increase under the action of any quantum channel E . For a fixed channel E and a state σ , the divergence between output states E ( ρ ) and E ( σ ) might be strictly smaller than the divergence between input states ρ and σ , which is characterized by the strong data processing inequality (SDPI). Among various input states ρ , the largest value of the rate of contraction is known as the SDPI constant. An important and widely studied property for classical channels is that SDPI constants tensorize. In this paper, we extend the tensorization property to the quantum regime: we establish the tensorization of SDPIs for the quantum χ κ 1 / 2 2 divergence for arbitrary quantum channels and also for a family of χ κ 2 divergences (with κ ≥ κ 1 / 2 ) for arbitrary quantum-classical channels. 
    more » « less
  3. Trace inequalities are general techniques with many applications in quantum information theory, often replacing the classical functional calculus in noncommutative settings. The physics of quantum field theory and holography, however, motivates entropy inequalities in type III von Neumann algebras that lack a semifinite trace. The Haagerup and Kosaki Lp spaces enable re-expressing trace inequalities in non-tracial von Neumann algebras. In particular, we show this for the generalized Araki–Lieb–Thirring and Golden–Thompson inequalities from the work of Sutter et al. [Commun. Math. Phys. 352(1), 37 (2017)]. Then, using the Haagerup approximation method, we prove a general von Neumann algebra version of universal recovery map corrections to the data processing inequality for relative entropy. We also show subharmonicity of a logarithmic p-fidelity of recovery. Furthermore, we prove that the non-decrease of relative entropy is equivalent to the existence of an L1-isometry implementing the channel on both input states. 
    more » « less
  4. Quantum channel discrimination has been studied from an information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of unknown channel accesses. In this paper, we study the query complexity of quantum channel discrimination, wherein the goal is to determine the minimum number of channel uses needed to reach a desired error probability. To this end, we show that the query complexity of binary channel discrimination depends logarithmically on the inverse error probability and inversely on the negative logarithm of the (geometric and Holevo) channel fidelity. As special cases of these findings, we precisely characterize the query complexity of discriminating two classical channels and two classical–quantum channels. Furthermore, by obtaining an optimal characterization of the sample complexity of quantum hypothesis testing when the error probability does not exceed a fixed threshold, we provide a more precise characterization of query complexity under a similar error probability threshold constraint. We also provide lower and upper bounds on the query complexity of binary asymmetric channel discrimination and multiple quantum channel discrimination. For the former, the query complexity depends on the geometric Rényi and Petz–Rényi channel divergences, while for the latter, it depends on the negative logarithm of the (geometric and Uhlmann) channel fidelity. For multiple channel discrimination, the upper bound scales as the logarithm of the number of channels. 
    more » « less
  5. When experimentally learning the action of a continuous-variable quantum process by probing it with inputs, there will often be some restriction on the input states used. One experimentally simple way to probe a quantum channel is to use low-energy coherent states. Learning a quantum channel in this way presents difficulties, due to the fact that two channels may act similarly on low-energy inputs but very differently for high-energy inputs. They may also act similarly on coherent-state inputs but differently on nonclassical inputs. Extrapolating the behavior of a channel for more general input states from its action on the far more limited set of low-energy coherent states is a case of out-of-distribution generalization. To be sure that such generalization gives meaningful results, one needs to relate error bounds for the training set to bounds that are valid for all inputs. We show that for any pair of channels that act sufficiently similarly on low-energy coherent-state inputs, one can bound how different the input-output relations are for any (high-energy or highly nonclassical) input. This proves that out-of-distribution generalization is always possible for learning quantum channels using low-energy coherent states, as long as enough samples are used. 
    more » « less