skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Union bound for quantum information processing
In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi–Nagaoka inequality (Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory 49 , 1753–1768. ( doi:10.1109/TIT.2003.813556 )), used often in quantum information theory when analysing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, Pythagoras' theorem, and the Cauchy–Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel's second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms and quantum complexity theory.  more » « less
Award ID(s):
1714215
PAR ID:
10300714
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
475
Issue:
2221
ISSN:
1364-5021
Page Range / eLocation ID:
20180612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Trace inequalities are general techniques with many applications in quantum information theory, often replacing the classical functional calculus in noncommutative settings. The physics of quantum field theory and holography, however, motivates entropy inequalities in type III von Neumann algebras that lack a semifinite trace. The Haagerup and Kosaki Lp spaces enable re-expressing trace inequalities in non-tracial von Neumann algebras. In particular, we show this for the generalized Araki–Lieb–Thirring and Golden–Thompson inequalities from the work of Sutter et al. [Commun. Math. Phys. 352(1), 37 (2017)]. Then, using the Haagerup approximation method, we prove a general von Neumann algebra version of universal recovery map corrections to the data processing inequality for relative entropy. We also show subharmonicity of a logarithmic p-fidelity of recovery. Furthermore, we prove that the non-decrease of relative entropy is equivalent to the existence of an L1-isometry implementing the channel on both input states. 
    more » « less
  2. A multiple access channel describes a situation in which multiple senders are trying to forward messages to a single receiver using some physical medium. In this paper we consider scenarios in which this medium consists of just a single classical or quantum particle. In the quantum case, the particle can be prepared in a superposition state thereby allowing for a richer family of encoding strategies. To make the comparison between quantum and classical channels precise, we introduce an operational framework in which all possible encoding strategies consume no more than a single particle. We apply this framework to an N -port interferometer experiment in which each party controls a path the particle can traverse. When used for the purpose of communication, this setup embodies a multiple access channel (MAC) built with a single particle.We provide a full characterization of the N -party classical MACs that can be built from a single particle, and we show that every non-classical particle can generate a MAC outside the classical set. To further distinguish the capabilities of a single classical and quantum particle, we relax the locality constraint and allow for joint encodings by subsets of 1 < K N parties. This generates a richer family of classical MACs whose polytope dimension we compute. We identify a generalized fingerprinting inequality'' as a valid facet for this polytope, and we verify that a quantum particle distributed among N separated parties can violate this inequality even when K = N 1 . Connections are drawn between the single-particle framework and multi-level coherence theory. We show that every pure state with K -level coherence can be detected in a semi-device independent manner, with the only assumption being conservation of particle number. 
    more » « less
  3. The Golden–Thompson trace inequality, which states that Tr  e H+ K ≤ Tr  e H e K , has proved to be very useful in quantum statistical mechanics. Golden used it to show that the classical free energy is less than the quantum one. Here, we make this G–T inequality more explicit by proving that for some operators, notably the operators of interest in quantum mechanics, H = Δ or [Formula: see text] and K = potential, Tr  e H+(1− u) K e uK is a monotone increasing function of the parameter u for 0 ≤ u ≤ 1. Our proof utilizes an inequality of Ando, Hiai, and Okubo (AHO): Tr  X s Y t X 1− s Y 1− t ≤ Tr  XY for positive operators X, Y and for [Formula: see text], and [Formula: see text]. The obvious conjecture that this inequality should hold up to s + t ≤ 1 was proved false by Plevnik [Indian J. Pure Appl. Math. 47, 491–500 (2016)]. We give a different proof of AHO and also give more counterexamples in the [Formula: see text] range. More importantly, we show that the inequality conjectured in AHO does indeed hold in the full range if X, Y have a certain positivity property—one that does hold for quantum mechanical operators, thus enabling us to prove our G–T monotonicity theorem. 
    more » « less
  4. Abstract The speed limit of quantum state transfer (QST) in a system of interacting particles is not only important for quantum information processing, but also directly linked to Lieb–Robinson-type bounds that are crucial for understanding various aspects of quantum many-body physics. For strongly long-range interacting systems such as a fully-connected quantum computer, such a speed limit is still unknown. Here we develop a new quantum brachistochrone method that can incorporate inequality constraints on the Hamiltonian. This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer. 
    more » « less
  5. Holevo's just-as-good fidelity is a similarity measure for quantum states that has found several applications. One of its critical properties is that it obeys a data processing inequality: the measure does not decrease under the action of a quantum channel on the underlying states. In this paper, I prove a refinement of this data processing inequality that includes an additional term related to recoverability. That is, if the increase in the measure is small after the action of a partial trace, then one of the states can be nearly recovered by the Petz recovery channel, while the other state is perfectly recovered by the same channel. The refinement is given in terms of the trace distance of one of the states to its recovered version and also depends on the minimum eigenvalue of the other state. As such, the refinement is universal, in the sense that the recovery channel depends only on one of the states, and it is explicit, given by the Petz recovery channel. The appendix contains a generalization of the aforementioned result to arbitrary quantum channels. 
    more » « less