Abstract Background Management actions that address local-scale stressors on coral reefs can rapidly improve water quality and reef ecosystem condition. In response to reef managers who need actionable thresholds for coastal runoff and dredging, we conducted a systematic review and meta-analysis of experimental studies that explore the effects of sediment on corals. We identified exposure levels that ‘adversely’ affect corals while accounting for sediment bearing (deposited vs. suspended), coral life-history stage, and species, thus providing empirically based estimates of stressor thresholds on vulnerable coral reefs. Methods We searched online databases and grey literature to obtain a list of potential studies, assess their eligibility, and critically appraise them for validity and risk of bias. Data were extracted from eligible studies and grouped by sediment bearing and coral response to identify thresholds in terms of the lowest exposure levels that induced an adverse physiological and/or lethal effect. Meta-regression estimated the dose–response relationship between exposure level and the magnitude of a coral’s response, with random-effects structures to estimate the proportion of variance explained by factors such as study and coral species. Review findings After critical appraisal of over 15,000 records, our systematic review of corals’ responses to sediment identified 86 studies to be included in meta-analyses (45 studies for deposited sediment and 42 studies for suspended sediment). The lowest sediment exposure levels that caused adverse effects in corals were well below the levels previously described as ‘normal’ on reefs: for deposited sediment, adverse effects occurred as low as 1 mg/cm 2 /day for larvae (limited settlement rates) and 4.9 mg/cm 2 /day for adults (tissue mortality); for suspended sediment, adverse effects occurred as low as 10 mg/L for juveniles (reduced growth rates) and 3.2 mg/L for adults (bleaching and tissue mortality). Corals take at least 10 times longer to experience tissue mortality from exposure to suspended sediment than to comparable concentrations of deposited sediment, though physiological changes manifest 10 times faster in response to suspended sediment than to deposited sediment. Threshold estimates derived from continuous response variables (magnitude of adverse effect) largely matched the lowest-observed adverse-effect levels from a summary of studies, or otherwise helped us to identify research gaps that should be addressed to better quantify the dose–response relationship between sediment exposure and coral health. Conclusions We compiled a global dataset that spans three oceans, over 140 coral species, decades of research, and a range of field- and lab-based approaches. Our review and meta-analysis inform the no-observed and lowest-observed adverse-effect levels (NOAEL, LOAEL) that are used in management consultations by U.S. federal agencies. In the absence of more location- or species-specific data to inform decisions, our results provide the best available information to protect vulnerable reef-building corals from sediment stress. Based on gaps and limitations identified by our review, we make recommendations to improve future studies and recommend future synthesis to disentangle the potentially synergistic effects of multiple coral-reef stressors.
more »
« less
Short-term elevations in glucocorticoids do not alter telomere lengths: A systematic review and meta-analysis of non-primate vertebrate studies
Background The neuroendocrine stress response allows vertebrates to cope with stressors via the activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis, which ultimately results in the secretion of glucocorticoids (GCs). Glucocorticoids have pleiotropic effects on behavior and physiology, and might influence telomere length dynamics. During a stress event, GCs mobilize energy towards survival mechanisms rather than to telomere maintenance. Additionally, reactive oxygen species produced in response to increased GC levels can damage telomeres, also leading to telomere shortening. In our systematic review and meta-analysis, we tested whether GC levels impact telomere length and if this relationship differs among time frame, life history stage, or stressor type. We hypothesized that elevated GC levels are linked to a decrease in telomere length. Methods We conducted a literature search for studies investigating the relationship between telomere length and GCs in non-human vertebrates using four search engines: Web of Science, Google Scholar, Pubmed and Scopus, last searched on September 27th, 2020. This review identified 31 studies examining the relationship between GCs and telomere length. We pooled the data using Fisher’s Z for 15 of these studies. All quantitative studies underwent a risk of bias assessment. This systematic review study was registered in the Open Science Framework Registry ( https://osf.io/rqve6 ). Results The pooled effect size from fifteen studies and 1066 study organisms shows no relationship between GCs and telomere length (Fisher’s Z = 0.1042, 95% CI = 0.0235; 0.1836). Our meta-analysis synthesizes results from 15 different taxa from the mammalian, avian, amphibian groups. While these results support some previous findings, other studies have found a direct relationship between GCs and telomere dynamics, suggesting underlying mechanisms or concepts that were not taken into account in our analysis. The risk of bias assessment revealed an overall low risk of bias with occasional instances of bias from missing outcome data or bias in the reported result. Conclusion We highlight the need for more targeted experiments to understand how conditions, such as experimental timeframes, stressor(s), and stressor magnitudes can drive a relationship between the neuroendocrine stress response and telomere length.
more »
« less
- Award ID(s):
- 1907155
- PAR ID:
- 10300889
- Editor(s):
- Saretzki, Gabriele
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 10
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0257370
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Vertebrates respond to a diversity of stressors by rapidly elevating glucocorticoid (GC) levels. The changes in physiology and behavior triggered by this response can be crucial for surviving a variety of challenges. Yet the same process that is invaluable in coping with immediate threats can also impose substantial damage over time. In addition to the pathological effects of long-term exposure to stress hormones, even relatively brief elevations can impair the expression of a variety of behaviors and physiological processes central to fitness, including sexual behavior, parental behavior, and immune function. Therefore, the ability to rapidly and effectively terminate the short-term response to stress may be fundamental to surviving and reproducing in dynamic environments. Here we review the evidence that variation in the ability to terminate the stress response through negative feedback is an important component of stress coping capacity. We suggest that coping capacity may also be influenced by variation in the dynamic regulation of GCs—specifically, the ability to rapidly turn on and off the stress response. Most tests of the fitness effects of these traits to date have focused on organisms experiencing severe or prolonged stressors. Here we use data collected from a long-term study of tree swallows (Tachycineta bicolor) to test whether variation in negative feedback, or other measures of GC regulation, predict components of fitness in non-chronically stressed populations. We find relatively consistent, but generally weak relationships between different fitness components and the strength of negative feedback. Reproductive success was highest in individuals that both mounted a robust stress response and had strong negative feedback. We did not see consistent evidence of a relationship between negative feedback and adult or nestling survival: negative feedback was retained in the best supported models of nestling and adult survival, but in two of three survival-related analyses the intercept-only model received only slightly less support. Both negative feedback and stress-induced GC levels—but not baseline GCs—were individually repeatable. These measures of GC activity did not consistently covary across ages and life history stages, indicating that they are independently regulated. Overall, the patterns seen here are consistent with the predictions that negative feedback—and the dynamic regulation of GCs—are important components of stress coping capacity, but that the fitness benefits of having strong negative feedback during the reproductive period are likely to manifest primarily in individuals exposed to chronic or repeated stressors.more » « less
-
Abstract The mechanisms connecting environmental conditions to plasticity in biological aging trajectories are fundamental to understanding individual variation in functional traits and life history. Recent findings suggest that telomere biology is especially dynamic during early life stages and has long‐term consequences for subsequent reproduction and survival. However, our current understanding is mostly derived from studies investigating ecological and anthropogenic factors separately, leaving the effects of complex environmental interactions unresolved. American alligators (Alligator mississippiensis) are long‐lived apex predators that rely on incubation temperature during a discrete period during development and endocrine cues to determine sex, making them especially vulnerable to current climatic variability and exposure to anthropogenic contaminants interfering with hormone function. Here, we combine field studies with a factorial design to understand how the developmental environment, along with intrinsic biological variation contribute to persistent telomere variation. We found that exposure to a common endocrine disrupting contaminant, DDE, affects telomere length, but that the directionality is highly dependent upon incubation temperature. Variation in hatchling growth, underlies a strong clutch effect. We also assess concentrations of a panel of glucocorticoid hormones and find that contaminant exposure elicits an increase in circulating glucocorticoids. Consistent with emerging evidence linking stress and aging trajectories, GC levels also appear to trend with shorter telomere length. Thus, we add support for a mechanistic link between contaminants and glucocorticoid signalling, which interacts with ecological aspects of the developmental environment to alter telomere dynamics.more » « less
-
Abstract Decades of research into stress responses have highlighted large variation among individuals, populations, and species, and the sources of this variation have been a center of research across disciplines. The most common measure of the vertebrate stress response is glucocorticoids. However, the predictive power of glucocorticoid responses to fitness is surprisingly low. This is partly because the hormone levels rapidly change in response to stressor exposure and elevated levels at one time point can indicate either that glucocorticoids are helping the organism cope with the stressor or that dysregulation of hormone release is harming the organism. Meaning, the fitness consequences of the stressor depends on how efficient the stress responses are at negating the harmful impacts of stressors to cells and tissues. To encompass the idea of the efficiency of stress responses and to integrate cellular and organismal stress responses, a new theoretical model called the Damage-Fitness Model was developed. The model focuses on the downstream effects of stress responses and predicts that the accumulation of damage in cells and tissues (e.g., persistent damage to proteins, lipids, and DNA) negatively impacts fitness components. In this mini-review, we examine evidence supporting the Damage-Fitness Model and explore new directions forward.more » « less
-
Abstract The gut microbiome impacts host health and fitness, in part through the diversification of gut metabolic function and pathogen protection. Elevations in glucocorticoids (GCs) appear to reduce gut microbiome diversity in experimental studies, suggesting that a loss of microbial diversity may be a negative consequence of increased GCs. However, given that ecological factors like food availability and population density may independently influence both GCs and microbial diversity, understanding how these factors structure the GC-microbiome relationship is crucial to interpreting its significance in wild populations. Here, we used an ecological framework to investigate the relationship between GCs and gut microbiome diversity in wild North American red squirrels (Tamiasciurus hudsonicus). As expected, higher GCs predicted lower gut microbiome diversity and an increase in metabolic taxa. Surprisingly, but in line with prior empirical studies on wild animals, gastrointestinal pathogens decreased as GCs increased. Both dietary heterogeneity and an upcoming food pulse exhibited direct effects on gut microbiome diversity, whereas conspecific density and reproductive activity impacted diversity indirectly via changes in host GCs. Our results provide evidence of a gut–brain axis in wild red squirrels and highlight the importance of situating the GC-gut microbiome relationship within an ecological framework.more » « less
An official website of the United States government

