skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Fine-scale morphological, genomic, reproductive, and symbiont differences delimit the Caribbean octocorals Plexaura homomalla and P. kükenthali
Abstract Octocorals are conspicuous members of coral reefs and deep-sea ecosystems. Yet, species boundaries and taxonomic relationships within this group remain poorly understood, hindering our understanding of this essential component of the marine fauna. We used a multifaceted approach to revisit the systematics of the Caribbean octocorals Plexaura homomalla and Plexaura kükenthali , two taxa that have a long history of taxonomic revisions. We integrated morphological and reproductive analyses with high-throughput sequencing technology to clarify the relationship between these common gorgonians. Although size and shape of the sclerites are significantly different, there is overlap in the distributions making identification based on sclerites alone difficult. Differences in reproductive timing and mode of larval development were detected, suggesting possible mechanisms of pre-zygotic isolation. Furthermore, there are substantial genetic differences and clear separation of the two species in nuclear introns and single-nucleotide polymorphisms obtained from de novo assembled transcriptomes. Despite these differences, analyses with SNPs suggest that hybridization is still possible between the two groups. The two nascent species also differed in their symbiont communities (genus Breviolum ) across multiple sampling sites in the Caribbean. Despite a complicated history of taxonomic revisions, our results support the differentiation of P. homomalla and P. kükenthali, emphasizing that integrative approaches are essential for Anthozoan systematics.  more » « less
Award ID(s):
2032919 1756381
NSF-PAR ID:
10301005
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Coral Reefs
ISSN:
0722-4028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Successful recruitment is critical to the maintenance and resilience of populations and may be at the core of the transition from scleractinian to octocoral dominated faunas on some Caribbean reefs. For sessile invertebrates, recruitment incorporates the composite effects of larval supply, settlement and survival. The relative success of these processes differs between species and successful recruitment may be achieved through different life history strategies. Recruitment of six abundant and widespread Antillogorgia spp. was assessed at six sites on Little Bahama Bank from 2009–2012. Identification of recruits to species level, based on microsatellite analyses, revealed differences in recruitment and survival between species, sites and ears. The broadcast spawning species, A. americana and A. acerosa had low rates of early recruitment and postsettlement survival. Higher levels of recruitment success were achieved among brooding and surface brooding species following somewhat different patterns of early recruitment and survival. The internal brooder Antillogorgia hystrix had the highest recruitment at five of the sites but low survival dramatically reduced its abundance and after a year it had similar densities as the surface brooding species, A. elisabethae and A. bipinnata. The brooders have smaller colonies and will produce fewer larvae than the broadcast spawning species, but they release competent larvae which probably accounts for their higher recruitment rates. The Antillogorgia illustrate the diversity of successful reproductive strategies exhibited by octocorals, and differences in the life history strategies among these congeners are best characterized by their mode of larval development. 
    more » « less
  2. Abstract Aim

    Current distributions of widespread North American (NA) species have been shaped by Pleistocene glacial cycles, latitudinal temperature gradients, sharp longitudinal habitat transitions and the vicariant effects of major mountain and river systems that subdivide the continent. Within these transcontinental species, genetic diversity patterns might not conform to established biogeographic breaks compared to more spatially restricted taxa due to intrinsic differences or spatiotemporal differences. In this study, we highlight the effects of these extrinsic variables on genetic structuring by investigating the phylogeographic history of a widespread generalist squamate found throughout NA.

    Location

    North America.

    Taxon

    Common gartersnake,Thamnophis sirtalis.

    Methods

    We evaluate the effects of major river basins and the forest‐grassland transition into the Interior Plains on genetic structure patterns using phylogenetic, spatially informed population structure and demographic analyses of single nucleotide polymorphism data and address range expansion history with ecological niche modelling using locality and historic climate data.

    Results

    We identify four phylogeographic lineages with varying degrees of connectivity between them. We find discordant population structure patterns between sex‐linked and autosomal loci with respect to the relationship between the central NA lineage relative to coastal lineages. We find support for southeast Pleistocene refugia where recent secondary contact occurred during the Last Glacial Maximum and evidence for both northern and southern refugia in western NA.

    Main Conclusion

    Our results provide strong evidence for a Pliocene origin forT. sirtalisin central‐southeastern NA preceding its rapid expansion across the continent prior to middle Pleistocene climate‐mediated lineage formation. We implicate major riverine networks within the Mississippi watershed in likely repeated westward expansion events across the Interior Plains. Finally, we corroborate prior conclusions that phenotypic differences between subspecies do not reflect shared evolutionary history and note that the degree of separation between inferred lineages warrants further investigation before any taxonomic revisions are proposed.

     
    more » « less
  3. Recruitment is a key demographic process for maintenance of local populations and recovery following disturbance. For marine invertebrates, distribution and abundances of recruits are impacted by spatiotemporal variation in larval supply, settlement rates and post-settlement survival. However, for colonial and modular organisms, differences in survival and growth between settlers and colonial recruits may also affect recruitment patterns. In the Caribbean, shifts in the benthic community structure favoring octocoral’s have been detected, and recruitment has been suggested as key for octocoral’s resilience. Hence, we studied octocoral recruitment dynamics, and evaluated the role of pre-settlement, settlement and post-settlement processes in recruit’s densities. We performed the study at two sites with different octocoral densities, on the south coast of St. John, United States Virgin Islands, and distinguished between processes occurring to recently settled polyps and to colonial recruits. At both sites, we monitored P. homomalla settlers on settlement tiles for 3 months, and colonial recruits of two of the most abundant genera ( Eunicea and Pseudoplexaura) for 3 years. In addition, we assessed whether recruits morphological traits affected recruitment and divided recruits of the genus Eunicea based on the presence of large calyces. The major contributor to both, single-polyps and colonial recruit densities was larval supply. Single-polyp densities were not limited by the availability of space, settlement cues, or early post-settlement survival. Height was the only predictor of survival and growth of colonial recruits, with potential growth rates increasing with height. However, large recruits suffered partial mortality often, distorting the relationship between recruit age and size, and causing most recruits to remain in the recruit size class (≤5 cm) longer than a year. Octocorals have been resilient to the conditions that have driven the decline of scleractinian corals throughout the Caribbean, and recruitment has been key to that success. Our results are crucial to understand early life history dynamics of Caribbean octocorals, and highlights the need to standardize the definition of recruit among colonial and modular taxa to facilitate inter-specific comparisons, and to understand future changes in coral reef community assemblages. 
    more » « less
  4. Abstract Deer mice (genus Peromyscus ) are among the commonest small mammals in the Nearctic zoogeographic region. Nevertheless, systematic relationships are only partially settled and numerous taxonomic questions await resolution. For instance, researchers have found that some members of the Peromyscus truei species group contain high levels of genetic divergence that could indicate the presence of cryptic species. We analyzed the systematics and phylogenetic relationships of the P. truei group using new and previously published mitochondrial cytochrome b sequences. Our analyses verify several earlier conclusions, but we also detected new clades that deserve recognition. Considering their mitochondrial distinctiveness, allopatric ranges, and previously reported molecular, biochemical, chromosomal, morphological, and ecological differences, we elevate three previously described taxa to species. We support the recognition of two subgroupings. The first comprises P. gratus , P. truei , and possibly P. cf. martirensis and P. cf.  zapotecae . The second contains to P. amplus , P. attwateri , P. collinus , P. difficilis , P. felipensis , P. laceianus , P. nasutus , P. ochraventer , and P. pectoralis. Placement of P. bullatus will likely remain unknown until genetic data are available. Further research could improve our understanding of the evolutionary history of Peromyscus , but in some cases taxonomic issues must be resolved first. 
    more » « less
  5. Abstract

    In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy‐marker‐based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter‐relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher‐level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger‐based markers with newly generated and publicly available genome‐scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies.

     
    more » « less