skip to main content


Search for: All records

Award ID contains: 1756381

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As the major form of coral reef regime shift, stony coral to macroalgal transitions have received considerable attention. In the Caribbean, however, regime shifts in which scleractinian corals are replaced by octocoral assemblages hold potential for maintaining reef associated communities. Accordingly, forecasting the resilience of octocoral assemblages to future disturbance regimes is necessary to understand these assemblages' capacity to maintain reef biodiversity. We parameterised integral projection models quantifying the survival, growth, and recruitment of the octocorals,Antillogorgia americana,Gorgonia ventalina, andEunicea flexuosa,in St John, US Virgin Islands, before, during, and after severe hurricane disturbance. Using these models, we forecast the density of populations of each species under varying future hurricane regimes. We demonstrate that although hurricanes reduce population growth,A. americana,G. ventalina, andE. flexuosaeach display a capacity for quick recovery following storm disturbance. Despite this recovery potential, we illustrate how the population dynamics of each species correspond with a longer-term decline in their population densities. Despite their resilience to periodic physical disturbance events, ongoing global change jeopardises the future viability of octocoral assemblages.

     
    more » « less
  2. Abstract

    The three‐dimensional structure of habitats is a critical component of species' niches driving coexistence in species‐rich ecosystems. However, its influence on structuring and partitioning recruitment niches has not been widely addressed. We developed a new method to combine species distribution modelling and structure from motion, and characterized three‐dimensional recruitment niches of two ecosystem engineers on Caribbean coral reefs, scleractinian corals and gorgonians. Fine‐scale roughness was the most important predictor of suitable habitat for both taxa, and their niches largely overlapped, primarily due to scleractinians' broader niche breadth. Crevices and holes at mm scales on calcareous rock with low coral cover were more suitable for octocorals than for scleractinian recruits, suggesting that the decline in scleractinian corals is facilitating the recruitment of octocorals on contemporary Caribbean reefs. However, the relative abundances of the taxa were independent of the amount of suitable habitat on the reef, emphasizing that niche processes alone do not predict recruitment rates.

     
    more » « less
  3. Abstract

    Declines in abundance of scleractinian corals on shallow Caribbean reefs have left many reefs dominated by forests of arborescent octocorals. The ecological mechanisms favoring their persistence require exploration. We quantified octocoral communities from 2014 to 2019 at two sites in St. John, US Virgin Islands, and evaluated their dynamics to assess whether portfolio effects might contribute to their resilience. Octocorals were identified to species, or species complexes, and their abundances and heights were measured, with height2serving as a biomass proxy. Annual variation in abundance was asynchronous among species, except when they responded in similar ways to hurricanes in September 2017. Multivariate changes in octocoral communities, viewed in 2-dimensional ordinations, were similar between sites, but analyses based on density differed from those based on the biomass proxy. On the density scale, variation in the community composed of all octocoral species was indistinguishable from that quantified with subsets of 6–10 of the octocoral species at one of the two sites, identifying structural redundancy in the response of the community. Conservation of the relative colony size-frequency structure, combined with temporal changes in the species represented by the tallest colonies, suggests that portfolio effects and functional redundancy stabilize the vertical structure and canopy in these tropical octocoral forests.

     
    more » « less
  4. Abstract

    Patterns of population biology and community structure can be studied by looking closely at the ontogeny and reproductive biology of reef‐building organisms. This knowledge is particularly important for Caribbean octocorals, which seem to be more resilient to long‐term environmental change than scleractinian corals and provide some of the same ecological services. We monitored the development of the black sea rod,Plexaura homomalla, a common, widely distributed octocoral on shallow Caribbean reefs, from eggs to three‐polyp colonies over the course of 10 weeks. Gametes were collectedex situon St. John, U.S. Virgin Islands, during spawning events that occurred 3–6 days after the July full moon. Cleavage started 3.0 hr after fertilization and was holoblastic, equal, and radial. Embryos were positively buoyant until becoming planulae at 3 days after fertilization. Planulae were competent to settle 4 days after fertilization. Symbiodiniaceae began infecting polyps ~8 days after fertilization. Overall, development was typical for Caribbean octocorals, except for an increase in the number of embryos between 3.5 and 6.0 hr after fertilization.

     
    more » « less
  5. Unlike reef-building, scleractinian corals, Caribbean soft corals (octocorals) have not suffered marked declines in abundance associated with anthropogenic ocean warming. Both octocorals and reef-building scleractinians depend on a nutritional symbiosis with single-celled algae living within their tissues. In both groups, increased ocean temperatures can induce symbiont loss (bleaching) and coral death. Multiple heat waves from 2014 to 2016 resulted in widespread damage to reef ecosystems and provided an opportunity to examine the bleaching response of three Caribbean octocoral species. Symbiont densities declined during the heat waves but recovered quickly, and colony mortality was low. The dominant symbiont genotypes within a host generally did not change, and all colonies hosted symbiont species in the genusBreviolum.Their association with thermally tolerant symbionts likely contributes to the octocoral holobiont’s resistance to mortality and the resilience of their symbiont populations. The resistance and resilience of Caribbean octocorals offer clues for the future of coral reefs.

     
    more » « less
    Free, publicly-accessible full text available November 24, 2024
  6. Background Among species with size structured demography, population structure is determined by size specific survival and growth rates. This interplay is particularly important among recently settled colonial invertebrates for which survival is low and growth is the only way of escaping the high mortality that small colonies are subject to. Gorgonian corals settling on reefs can grow into colonies of millions of polyps and can be meters tall. However, all colonies start their benthic lives as single polyps, which are subject to high mortality rates. Annual survival among these species increases with size, reflecting the ability of colonies to increasingly survive partial mortality as they grow larger. Methods Data on survival and growth of gorgonian recruits in the genera Eunicea and Pseudoplexaura at two sites on the southern coast of St John, US Virgin Islands were used to generate a stage structured model that characterizes growth of recruits from 0.3 cm until they reach 5 cm height. The model used the frequency distributions of colony growth rates to incorporate variability into the model. Results High probabilities of zero and negative growth increase the time necessary to reach 5 cm and extends the demographic bottleneck caused by high mortality to multiple years. Only 5% of the recruits in the model survived and reached 5 cm height and, on average, recruits required 3 y to reach 5 cm height. Field measurements of recruitment rates often use colony height to differentiate recruits from older colonies, but height cannot unambiguously identify recruits due to the highly variable nature of colony growth. Our model shows how recruitment rates based on height average recruitment and survival across more than a single year, but size-based definitions of recruitment if consistently used can characterize the role of supply and early survival in the population dynamics of species. 
    more » « less
  7. null (Ed.)
    Abstract Octocorals are conspicuous members of coral reefs and deep-sea ecosystems. Yet, species boundaries and taxonomic relationships within this group remain poorly understood, hindering our understanding of this essential component of the marine fauna. We used a multifaceted approach to revisit the systematics of the Caribbean octocorals Plexaura homomalla and Plexaura kükenthali , two taxa that have a long history of taxonomic revisions. We integrated morphological and reproductive analyses with high-throughput sequencing technology to clarify the relationship between these common gorgonians. Although size and shape of the sclerites are significantly different, there is overlap in the distributions making identification based on sclerites alone difficult. Differences in reproductive timing and mode of larval development were detected, suggesting possible mechanisms of pre-zygotic isolation. Furthermore, there are substantial genetic differences and clear separation of the two species in nuclear introns and single-nucleotide polymorphisms obtained from de novo assembled transcriptomes. Despite these differences, analyses with SNPs suggest that hybridization is still possible between the two groups. The two nascent species also differed in their symbiont communities (genus Breviolum ) across multiple sampling sites in the Caribbean. Despite a complicated history of taxonomic revisions, our results support the differentiation of P. homomalla and P. kükenthali, emphasizing that integrative approaches are essential for Anthozoan systematics. 
    more » « less
  8. Recruitment is a key demographic process for maintenance of local populations and recovery following disturbance. For marine invertebrates, distribution and abundances of recruits are impacted by spatiotemporal variation in larval supply, settlement rates and post-settlement survival. However, for colonial and modular organisms, differences in survival and growth between settlers and colonial recruits may also affect recruitment patterns. In the Caribbean, shifts in the benthic community structure favoring octocoral’s have been detected, and recruitment has been suggested as key for octocoral’s resilience. Hence, we studied octocoral recruitment dynamics, and evaluated the role of pre-settlement, settlement and post-settlement processes in recruit’s densities. We performed the study at two sites with different octocoral densities, on the south coast of St. John, United States Virgin Islands, and distinguished between processes occurring to recently settled polyps and to colonial recruits. At both sites, we monitored P. homomalla settlers on settlement tiles for 3 months, and colonial recruits of two of the most abundant genera ( Eunicea and Pseudoplexaura) for 3 years. In addition, we assessed whether recruits morphological traits affected recruitment and divided recruits of the genus Eunicea based on the presence of large calyces. The major contributor to both, single-polyps and colonial recruit densities was larval supply. Single-polyp densities were not limited by the availability of space, settlement cues, or early post-settlement survival. Height was the only predictor of survival and growth of colonial recruits, with potential growth rates increasing with height. However, large recruits suffered partial mortality often, distorting the relationship between recruit age and size, and causing most recruits to remain in the recruit size class (≤5 cm) longer than a year. Octocorals have been resilient to the conditions that have driven the decline of scleractinian corals throughout the Caribbean, and recruitment has been key to that success. Our results are crucial to understand early life history dynamics of Caribbean octocorals, and highlights the need to standardize the definition of recruit among colonial and modular taxa to facilitate inter-specific comparisons, and to understand future changes in coral reef community assemblages. 
    more » « less