skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Morphology and molecular phylogenetics of the rockpens
Previous research supports the idea that all sea pens anchor to soft sediment using a long, basal, peduncle. The discovery of several pennatulacean sea pen species (rockpens) with an adaptation to bind to rocky substrata alters this understanding. The evolutionary history of octocorals, including these sea pens, has long been poorly understood due to a slow rate of mitochondrial gene evolution and a consequent lack of phylogenetically informative molecular markers to distinguish species. The objective of this project is to analyze three species of rockpens (Calibelemnon francei, Anthoptilum gowlettholmesae, Anthoptilum sp. Alaska) and other octocorals to construct a phylogeny to better understand the evolutionary relationships between these taxa. Using preserved specimens from the California Academy of Sciences' Department of Invertebrate Zoology, the genes of ten octocoral species were analyzed. This project sequenced three protein-coding mitochondrial genes, ND2, ND6, and msh1, and phylogenetic tree construction and analysis were done using Geneious and R Studio. Additionally, SEM photographs of the sclerites were used to morphologically characterize the taxa. We hypothesize that all rockpens actually belong to the genus Anthoptilum and form a monophyletic clade with other species of the genus that do not inhabit rocky substrata. Future research will require investigating how other non-rock inhabiting species in the genus Anthoptilum are phylogenetically related to the rockpens.  more » « less
Award ID(s):
2243994
PAR ID:
10502217
Author(s) / Creator(s):
;
Publisher / Repository:
Society for the Advancement of Chicanos/Hispanics and Native Americans in Science - 2023 NDiSTEM
Date Published:
Format(s):
Medium: X
Location:
Portland, OR
Sponsoring Org:
National Science Foundation
More Like this
  1. Zooxanthellate octocorals of the genus Cladiella Gray, 1869 are common on Indo-Pacific coral reefs, including in the Red Sea. Among the 61 species listed in WoRMS, 27 species were originally described from the Red Sea, mostly based on material collected in the 19th century. The latter includes the type species of the genus as well as the three other oldest known species of the genus. The goals of the present study were to locate the various natural history museum depositories of the 27 Red Sea types and to redescribe the types for the first time since their initial description. All type colonies were found and re-described using whole-colony photography and scanning electron microscopy (SEM) to depict their sclerites. SEM images provide the dimensions and the detailed surface-microstructure of all sclerite types present across all type materials. These findings led us to a revised diagnosis of the genus and an updated description of all 27 types. The results present a comprehensive overview of all of the Red Sea Cladiella type colonies, constituting the first step towards a complete taxonomic revision of this speciose genus.  
    more » « less
  2. Abstract Background In genus Rhinolophus , species in the Rhinolophus philippinensis and R. macrotis groups are unique because the horseshoe bats in these group have relatively low echolocation frequencies and flight speeds compared with other horseshoe bats with similar body size. The different characteristics among bat species suggest particular evolutionary processes may have occurred in this genus. To study the adaptive evidence in the mitochondrial genomes (mitogenomes) of rhinolophids, especially the mitogenomes of the species with low echolocation frequencies, we sequenced eight mitogenomes and used them for comparative studies of molecular phylogeny and adaptive evolution. Results Phylogenetic analysis using whole mitogenome sequences produced robust results and provided phylogenetic signals that were better than those obtained using single genes. The results supported the recent establishment of the separate macrotis group. The signals of adaptive evolution discovered in the Rhinolophus species were tested for some of the codons in two genes ( ND2 and ND6 ) that encode NADH dehydrogenases in oxidative phosphorylation system complex I. These genes have a background of widespread purifying selection. Signals of relaxed purifying selection and positive selection were found in ND2 and ND6 , respectively, based on codon models and physicochemical profiles of amino acid replacements. However, no pronounced overlap was found for non-synonymous sites in the mitogenomes of all the species with low echolocation frequencies. A signal of positive selection for ND5 was found in the branch-site model when R. philippinensis was set as the foreground branch. Conclusions The mitogenomes provided robust phylogenetic signals that were much more informative than the signals obtained using single mitochondrial genes. Two mitochondrial genes that encoding proteins in the oxidative phosphorylation system showed some evidence of adaptive evolution in genus Rhinolophus and the positive selection signals were tested for ND5 in R. philippinensis . These results indicate that mitochondrial protein-coding genes were targets of adaptive evolution during the evolution of Rhinolophus species, which might have contributed to a diverse range of acoustic adaptations in this genus. 
    more » « less
  3. Abstract Based on previously published molecular (mitochondrial) and herein provided morphological (qualitative and quantitative data) evidence, we describe a new species of leaf-eared mouse of the genus Phyllotis . The new species is morphometrically distinct when compared with other phylogenetically or geographically close species of Phyllotis , showing several quantitative differences in their external and craniodental characters (e.g., proportionally broader nasals and interorbital region, and proportionally smaller tympanic bullae). The new species is endemic to central Argentina, occurring on rocky grasslands at elevations of 650–2,800 m a.s.l. This is the only species of Phyllotis inhabiting the Central Sierras, a mountain system of medium elevation, isolated from the Andes by low elevation arid and semiarid environments. 
    more » « less
  4. Hypochilus is a relictual lineage of Nearctic spiders distributed disjunctly across the United States in three montane regions (California, southern Rocky Mountains, southern Appalachia). Phylogenetic resolution of species relationships in Hypochilus has been challenging, and conserved morphology coupled with extreme genetic divergence has led to uncertain species limits in some complexes. Here, Hypochilus interspecies relationships have been reconstructed and cryptic speciation more critically evaluated using a combination of ultraconserved elements, mitochondrial CO1 by-catch, and morphology. Phylogenomic data strongly support the monophyly of regional clades and support a ((California, Appalachia), southern Rocky Mountains) topology. In Appalachia, five species are resolved as four lineages ( H. thorelli Marx, 1888 and H. coylei Platnick, 1987 are clearly sister taxa), but the interrelationships of these four lineages remain unresolved. The Appalachian species H. pococki Platnick, 1987 is recovered as monophyletic but is highly genetically structured at the nuclear level. While algorithmic analyses of nuclear data indicate many species (e.g., all H. pococki populations as species), male morphology instead reveals striking stasis. Within the California clade, nuclear and mitochondrial lineages of H. petrunkevitchi Gertsch, 1958 correspond directly to drainage basins of the southern Sierra Nevada, with H. bernardino Catley, 1994 nested within H. petrunkevitchi and sister to the southernmost basin populations. Combining nuclear, mitochondrial, geographical, and morphological evidence a new species from the Tule River and Cedar Creek drainages is described, Hypochilus xomote sp. nov. We also emphasize the conservation issues that face several microendemic, habitat-specialized species in this remarkable genus. 
    more » « less
  5. Dorvilleidae is a diverse group of annelids found in many marine environments and also commonly associated with chemosynthetic habitats. One dorvilleid genus, Parougia, currently has 11 described species, of which two are found at vents or seeps: Parougia wolfi and Parougia oregonensis. Eight new Parougia species are recognised and described in this study from collections in the Pacific Ocean, all from whale-falls, hydrothermal vents, or methane seeps at ~600-m depth or greater. The specimens were studied using morphology and phylogenetic analyses of DNA sequences from mitochondrial (cytochrome c oxidase subunit I, 16S rRNA, and cytochrome b) and nuclear (18S rRNA and histone 3) genes. Six sympatric Parougia spp. were found at Hydrate Ridge, Oregon, while three of the Parougia species occurred at different types of chemosynthetic habitats. Two new species were found over wide geographical and bathymetric ranges. Another dorvilleid genus, Ophryotrocha, has previously been highlighted as diversifying in the deep-sea environment. Our results document the hitherto unknown diversity of another dorvilleid genus, Parougia, at various chemosynthetic environments.http://zoobank.org/urn:lsid:zoobank.org:pub:EC7EBBEA-2FB5-43D6-BE53-1A468B541A5C 
    more » « less