skip to main content


Title: Near-Inertial Waves and Turbulence Driven by the Growth of Swell
Abstract Between 5% and 25% of the total momentum transferred between the atmosphere and ocean is transmitted via the growth of long surface gravity waves called “swell.” In this paper, we use large-eddy simulations to show that swell-transmitted momentum excites near-inertial waves and drives turbulent mixing that deepens a rotating, stratified, turbulent ocean surface boundary layer. We find that swell-transmitted currents are less effective at producing turbulence and mixing the boundary layer than currents driven by an effective surface stress. Overall, however, the differences between swell-driven and surface-stress-driven boundary layers are relatively minor. In consequence, our results corroborate assumptions made in Earth system models that neglect the vertical structure of swell-transmitted momentum fluxes and instead parameterize all air–sea momentum transfer processes with an effective surface stress.  more » « less
Award ID(s):
1835576
NSF-PAR ID:
10301052
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
51
Issue:
5
ISSN:
0022-3670
Page Range / eLocation ID:
1337 to 1351
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The turbulent ocean surface boundary layer (OSBL) shoals during daytime solar surface heating, developing a diurnal warm layer (DWL). The DWL significantly influences OSBL dynamics by trapping momentum and heat in a shallow near‐surface layer. Therefore, DWL depth is critical for understanding OSBL transport and ocean‐atmosphere coupling. A great challenge for determining DWL depth is considering wave‐driven Langmuir turbulence (LT), which increases vertical transport. This study investigates observations with moderate wind speeds (4–7 m/s at 10 m height) and swell waves for which breaking wave effects are less pronounced. By employing turbulence‐resolving large eddy simulation experiments that cover observed wind, wave, and heating conditions based on the wave‐averaged Craik‐Lebovich equation, we develop a DWL depth scaling unifying previous approaches. This scaling closely agrees with observed DWL depths from a year‐long mooring deployment in the subtropical North Atlantic, demonstrating the critical role of LT in determining DWL depth and OSBL dynamics.

     
    more » « less
  2. Abstract

    The coupled dynamics of turbulent airflow and a spectrum of waves are known to modify air–sea momentum and scalar fluxes. Waves traveling at oblique angles to the wind are common in the open ocean, and their effects may be especially relevant when constraining fluxes in storm and tropical cyclone conditions. In this study, we employ large-eddy simulation for airflow over steep, strongly forced waves following and opposing oblique wind to elucidate its impacts on the wind speed magnitude and direction, drag coefficient, and wave growth/decay rate. We find that oblique wind maintains a signature of airflow separation while introducing a cross-wave component strongly modified by the waves. The directions of mean wind speed and mean wind shear vary significantly with height and are misaligned from the wind stress direction, particularly toward the surface. As the oblique angle increases, the wave form drag remains positive, but the wave impact on the equivalent surface roughness (drag coefficient) rapidly decreases and becomes negative at large angles. Our findings have significant implications for how the sea-state-dependent drag coefficient is parameterized in forecast models. Our results also suggest that wind speed and wind stress measurements performed on a wave-following platform can be strongly contaminated by the platform motion if the instrument is inside the wave boundary layer of dominant waves.

    Significance Statement

    Surface waves increase friction at the sea surface and modify how wind forces upper-ocean currents and turbulence. Therefore, it is important to include effects of different wave conditions in weather and climate forecasts. We aim to inform more accurate forecasts by investigating wind blowing over waves propagating in oblique directions using large-eddy simulation. We find that waves traveling at a 45° angle or larger to the wind grow as expected, but do not increase or even decrease the surface friction felt by the wind—a surprising result that has significant implications for how oblique wind-waves are represented as a source of surface friction in forecast models.

     
    more » « less
  3. Abstract

    Mixing processes in the upper ocean play a key role in transferring heat, momentum, and matter in the ocean. These mixing processes are significantly enhanced by wave‐driven Langmuir turbulence (LT). Based on a paired analysis of observations and simulations, this study investigates wind fetch and direction effects on LT at a coastal site south of the island Martha’s Vineyard (MA, USA). Our results demonstrate that LT is strongly influenced by wind fetch and direction in coastal oceans, both of which contribute to controlling turbulent coastal transport processes. For northerly offshore winds, land limits the wind fetch and wave development, whereas southerly winds are associated with practically infinite fetch. Observed and simulated two‐dimensional wave height spectra reveal persistent southerly swell and substantially more developed wind‐driven waves from the south. For oblique offshore winds, waves develop more strongly in the alongshore direction with less limited fetch, resulting in significant wind and wave misalignments. Observations of coherent near‐surface crosswind velocities indicate that LT is only present for sufficiently developed waves. The fetch‐limited northerly winds inhibit wave developments and the formation of LT. In addition to limited fetch, strong wind–wave misalignments prevent LT development. Although energetic and persistent, swell waves do not substantially influence LT activity during the observation period because these relatively long swell waves are associated with small Stokes drift shear. These observational results agree well with turbulence‐resolving large eddy simulations (LESs) based on the wave‐averaged Navier–Stokes equation, validating the LES approach to coastal LT in the complex wind and wave conditions.

     
    more » « less
  4. This study utilizes a large-eddy simulation (LES) approach to systematically assess the directional variability of wave-driven Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) under tropical cyclones (TCs). The Stokes drift vector, which drives LT through the Craik–Leibovich vortex force, is obtained through spectral wave simulations. LT’s direction is identified by horizontally elongated turbulent structures and objectively determined from horizontal autocorrelations of vertical velocities. In spite of a TC’s complex forcing with great wind and wave misalignments, this study finds that LT is approximately aligned with the wind. This is because the Reynolds stress and the depth-averaged Lagrangian shear (Eulerian plus Stokes drift shear) that are key in determining the LT intensity (determined by normalized depth-averaged vertical velocity variances) and direction are also approximately aligned with the wind relatively close to the surface. A scaling analysis of the momentum budget suggests that the Reynolds stress is approximately constant over a near-surface layer with predominant production of turbulent kinetic energy by Stokes drift shear, which is confirmed from the LES results. In this layer, Stokes drift shear, which dominates the Lagrangian shear, is aligned with the wind because of relatively short, wind-driven waves. On the contrary, Stokes drift exhibits considerable amount of misalignments with the wind. This wind–wave misalignment reduces LT intensity, consistent with a simple turbulent kinetic energy model. Our analysis shows that both the Reynolds stress and LT are aligned with the wind for different reasons: the former is dictated by the momentum budget, while the latter is controlled by wind-forced waves.

     
    more » « less
  5. null (Ed.)
    Abstract This study investigates the dynamics of velocity shear and Reynolds stress in the ocean surface boundary layer for idealized misaligned wind and wave fields using a large-eddy simulation (LES) model based on the Craik–Leibovich equations, which captures Langmuir turbulence (LT). To focus on the role of LT, the LES experiments omit the Coriolis force, which obscures a stress–current-relation analysis. Furthermore, a vertically uniform body force is imposed so that the volume-averaged Eulerian flow does not accelerate but is steady. All simulations are first spun-up without wind-wave misalignment to reach a fully developed stationary turbulent state. Then, a crosswind Stokes drift profile is abruptly imposed, which drives crosswind stresses and associated crosswind currents without generating volume-averaged crosswind currents. The flow evolves to a new stationary state, in which the crosswind Reynolds stress vanishes while the crosswind Eulerian shear and Stokes drift shear are still present, yielding a misalignment between Reynolds stress and Lagrangian shear (sum of Eulerian current and Stokes drift). A Reynolds stress budgets analysis reveals a balance between stress production and velocity–pressure gradient terms (VPG) that encloses crosswind Eulerian shear, demonstrating a complex relation between shear and stress. In addition, the misalignment between Reynolds stress and Eulerian shear generates a horizontal turbulent momentum flux (due to correlations of along-wind and crosswind turbulent velocities) that can be important in producing Reynolds stress (due to correlations of horizontal and vertical turbulent velocities). Thus, details of the Reynolds stress production by Eulerian and Stokes drift shear may be critical for driving upper-ocean currents and for accurate turbulence parameterizations in misaligned wind-wave conditions. 
    more » « less