skip to main content


Title: A method for resolving changes in atmospheric He ∕ N<sub>2</sub> as an indicator of fossil fuel extraction and stratospheric circulation
Abstract. The atmospheric He/N2 ratio is expected to increase due to the emission of He associated with fossil fuels and isexpected to also vary in both space and time due to gravitational separationin the stratosphere. These signals may be useful indicators of fossil fuelexploitation and variability in stratospheric circulation, but directmeasurements of He/N2 ratio are lacking on all timescales. Here wepresent a high-precision custom inlet system for mass spectrometers thatcontinuously stabilizes the flow of gas during sample–standard comparisonand removes all non-noble gases from the gas stream. This enablesunprecedented accuracy in measurement of relative changes in the helium molefraction, which can be directly related to the 4He/N2 ratio usingsupplementary measurements of O2/N2, Ar/N2 and CO2.Repeat measurements of the same combination of high-pressure tanks using ourinlet system achieves a He/N2 reproducibility of∼ 10 per meg (i.e., 0.001 %) in 6–8 h analyses. This compares to interannual changesof gravitational enrichment at ∼ 35 km in the midlatitudestratosphere of order 300–400 per meg and an annual tropospheric increasefrom human fossil fuel activity of less than ∼ 30 per meg yr−1 (bounded by previous work on helium isotopes). The gettering andflow-stabilizing inlet may also be used for the analysis of other noble-gasisotopes and could resolve previously unobserved seasonal cycles inKr/N2 and Xe/N2.  more » « less
Award ID(s):
1940361
NSF-PAR ID:
10301097
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
14
Issue:
3
ISSN:
1867-8548
Page Range / eLocation ID:
2515 to 2527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chen, Huilin (Ed.)

    Abstract. Tropospheric helium variations are tightly linked to CO2 due to the co-emission of He and CO2 from natural-gasburning. Recently, Birner et al. (2022a) showed that the global consumption of natural gas has measurably increased the He content of theatmosphere. Like CO2, He is also predicted to exhibit complex spatial and temporal variability on shorter timescales, butmeasurements of these short-term variations are lacking. Here, we present the development of an improved gas delivery and purification system for thesemi-continuous mass spectrometric measurement of the atmospheric He-to-nitrogen ratio (He/N2). The method replaces the chemicalgetter used previously by Birner et al. (2021, 2022a) to preconcentrate He in an air stream with a cryogenic trap which can be more simplyregenerated by heating and which improves the precision of the measurement to 22 per meg (i.e., 0.022 ‰) in10 min (1σ). Using this “cryo-enrichment” method, we measured the He/N2 ratios in ambient air at La Jolla (California,USA) over 5 weeks in 2022. During this period, He/N2 was strongly correlated with atmospheric CO2 concentrations, as expectedfrom anthropogenic emissions, with a diurnal cycle of 450–500 per meg (max–min) caused by the sea–land breeze pattern of local winds,which modulates the influence of local pollution sources.

     
    more » « less
  2. Abstract. This paper presents a new technique to derive thermospheric temperature from space-based disk observations of far ultraviolet airglow. The technique, guided by findings from principal component analysis of synthetic daytime Lyman–Birge–Hopfield (LBH) disk emissions, uses a ratio of the emissions in two spectral channels that together span the LBH (2,0) band to determine the change in band shape with respect to a change in the rotational temperature of N2. The two-channel-ratio approach limits representativeness and measurement error by only requiring measurement of the relative magnitudes between two spectral channels and not radiometrically calibrated intensities, simplifying the forward model from a full radiative transfer model to a vibrational–rotational band model. It is shown that the derived temperature should be interpreted as a column-integrated property as opposed to a temperature at a specified altitude without utilization of a priori information of the thermospheric temperature profile. The two-channel-ratio approach is demonstrated using NASA GOLD Level 1C disk emission data for the period of 2–8 November 2018 during which a moderate geomagnetic storm has occurred. Due to the lack of independent thermospheric temperature observations, the efficacy of the approach is validated through comparisons of the column-integrated temperature derived from GOLD Level 1C data with the GOLD Level 2 temperature product as well as temperatures from first principle and empirical models. The storm-time thermospheric response manifested in the column-integrated temperature is also shown to corroborate well with hemispherically integrated Joule heating rates, ESA SWARM mass density at 460 km, and GOLD Level 2 column O/N2 ratio. 
    more » « less
  3. Abstract. Chlorine-initiated oxidation of n-alkanes (C8−12) under high-nitrogen oxide conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8−12 alkanes (0.04 to 0.35). A high-resolution time-of-flight chemical ionization mass spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO–CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize the composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35% to 67% RH) relative to dry conditions (under 5% RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO–CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime.

     
    more » « less
  4. Abstract. The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID. 
    more » « less
  5. Rationale

    The simultaneous analysis of the three stable isotopes of oxygen—triple oxygen isotope analysis—has become an important analytical technique in natural sciences. Determination of the abundance of the rare17O isotope in CO2gas using magnetic sector isotope ratio mass spectrometry is complicated by the isobaric interference of17O by13C (13C16O16O and12C16O17O, both have mass 45 amu). A number of analytical techniques have been used to measure the17O/16O ratio of CO2gas. They either are time consuming and technically challenging or have limited precision. A rapid and precise alternative to the available analytical methods is desirable.

    Methods

    We present the results of triple oxygen isotope analyses using an Aerodyne tunable infrared laser direct absorption spectroscopy (TILDAS) CO2analyzer configured for16O,17O, and18O combined with a custom gas inlet system. We evaluate the sensitivity of our results to a number of parameters. CO2samples with a wide range of δ18O values (from −9.28‰ to 39.56‰) were measured and compared to results using the well‐established fluorination‐gas source mass spectrometry method.

    Results

    The TILDAS system has a precision (standard error, 2σ) of better than ±0.03‰ for δ18O and ±10 per meg for Δ′17O values, equivalent to the precision of previous analytical methods. Samples as small as 3 μmol CO2(equivalent to 300 μg CaCO3) can be analyzed with a total analysis time of ~30 min.

    Conclusions

    We have successfully developed an analytical technique for the simultaneous determination of the δ17O and δ18O values of CO2gas. The precision is equal to or better than that of existing techniques, with no additional chemical treatments required. Analysis time is rapid, and the system is easily automated so that large numbers of samples can be analyzed with minimal effort.

     
    more » « less