In this paper, we present a novel network‐based approach for reconstructing signed distance functions from fluid particles. The method uses a weighting kernel to transfer particles to a regular grid, which forms the input to a convolutional neural network. We propose a regression‐based regularization to reduce surface noise without penalizing high‐curvature features. The reconstruction exhibits improved spatial surface smoothness and temporal coherence compared with existing state of the art surface reconstruction methods. The method is insensitive to particle sampling density and robustly handles thin features, isolated particles, and sharp edges.
more »
« less
Accelerated Graph Learning from Smooth Signals
We consider network topology identification subject to a signal smoothness prior on the nodal observations. A fast dual-based proximal gradient algorithm is developed to efficiently tackle a strongly convex, smoothness-regularized network inverse problem known to yield high-quality graph solutions. Unlike existing solvers, the novel iterations come with global convergence rate guarantees and do not require additional step-size tuning. Reproducible simulated tests demonstrate the effectiveness of the proposed method in accurately recovering random and real-world graphs, markedly faster than state-of-the-art alternatives and without incurring an extra computational burden.
more »
« less
- PAR ID:
- 10301111
- Date Published:
- Journal Name:
- IEEE Signal Processing Letters
- ISSN:
- 1070-9908
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we propose a new framework to detect adversarial examples motivated by the observations that random components can improve the smoothness of predictors and make it easier to simulate the output distribution of a deep neural network. With these observations, we propose a novel Bayesian adversarial example detector, short for BATER, to improve the performance of adversarial example detection. Specifically, we study the distributional difference of hidden layer output between natural and adversarial examples, and propose to use the randomness of the Bayesian neural network to simulate hidden layer output distribution and leverage the distribution dispersion to detect adversarial examples. The advantage of a Bayesian neural network is that the output is stochastic while a deep neural network without random components does not have such characteristics. Empirical results on several benchmark datasets against popular attacks show that the proposed BATER outperforms the state-of-the-art detectors in adversarial example detection.more » « less
-
We investigate online network topology identification from smooth nodal observations acquired in a streaming fashion. Different from non-adaptive batch solutions, our distinctive goal is to track the (possibly) dynamic adjacency matrix with affordable memory and computational costs by processing signal snapshots online. To this end, we leverage and truncate dual-based proximal gradient (DPG) iterations to solve a composite smoothness-regularized, time-varying inverse problem. Numerical tests with synthetic and real electrocorticography data showcase the effectiveness of the novel lightweight iterations when it comes to tracking slowly-varying network connectivity. We also show that the online DPG algorithm converges faster than a primal-based baseline of comparable complexity. Aligned with reproducible research practices, we share the code developed to produce all figures included in this paper.more » « less
-
We consider the problem of estimating the values of a function over n nodes of a d-dimensional grid graph (having equal side lengths) from noisy observations. The function is assumed to be smooth, but is allowed to exhibit different amounts of smoothness at different regions in the grid. Such heterogeneity eludes classical measures of smoothness from nonparametric statistics, such as Holder smoothness. Meanwhile, total variation (TV) smoothness classes allow for heterogeneity, but are restrictive in another sense: only constant functions count as perfectly smooth (achieve zero TV). To move past this, we define two new higher-order TV classes, based on two ways of compiling the discrete derivatives of a parameter across the nodes. We relate these two new classes to Holder classes, and derive lower bounds on their minimax errors. We also analyze two naturally associated trend filtering methods; when d=2, each is seen to be rate optimal over the appropriate class.more » « less
-
Approximate message passing (AMP) is a scalable, iterative approach to signal recovery. For structured random measurement ensembles, including independent and identically distributed (i.i.d.) Gaussian and rotationally-invariant matrices, the performance of AMP can be characterized by a scalar recursion called state evolution (SE). The pseudo-Lipschitz (polynomial) smoothness is conventionally assumed. In this work, we extend the SE for AMP to a new class of measurement matrices with independent (not necessarily identically distributed) entries. We also extend it to a general class of functions, called controlled functions which are not constrained by the polynomial smoothness; unlike the pseudo-Lipschitz function that has polynomial smoothness, the controlled function grows exponentially. The lack of structure in the assumed measurement ensembles is addressed by leveraging Lindeberg-Feller. The lack of smoothness of the assumed controlled function is addressed by a proposed conditioning technique leveraging the empirical statistics of the AMP instances. The resultants grant the use of the SE to a broader class of measurement ensembles and a new class of functions.more » « less
An official website of the United States government

