skip to main content

Title: Synthesis, structural studies, and redox chemistry of bimetallic [Mn(CO) 3 ] and [Re(CO) 3 ] complexes
Manganese ([Mn(CO) 3 ]) and rhenium tricarbonyl ([Re(CO) 3 ]) complexes represent a workhorse family of compounds with applications in a variety of fields. Here, the coordination, structural, and electrochemical properties of a family of mono- and bimetallic [Mn(CO) 3 ] and [Re(CO) 3 ] complexes are explored. In particular, a novel heterobimetallic complex featuring both [Mn(CO) 3 ] and [Re(CO) 3 ] units supported by 2,2′-bipyrimidine (bpm) has been synthesized, structurally characterized, and compared to the analogous monomeric and homobimetallic complexes. To enable a comprehensive structural analysis for the series of complexes, we have carried out new single crystal X-ray diffraction studies of seven compounds: Re(CO) 3 Cl(bpm), anti -[{Re(CO 3 )Cl} 2 (bpm)], Mn(CO) 3 Br(bpz) (bpz = 2,2′-bipyrazine), Mn(CO) 3 Br(bpm), syn - and anti -[{Mn(CO 3 )Br} 2 (bpm)], and syn -[Mn(CO 3 )Br(bpm)Re(CO) 3 Br]. Electrochemical studies reveal that the bimetallic complexes are reduced at much more positive potentials (Δ E ≥ 380 mV) compared to their monometallic analogues. This redox behavior is consistent with introduction of the second tricarbonyl unit which inductively withdraws electron density from the bridging, redox-active bpm ligand, resulting in more positive reduction potentials. [Re(CO 3 )Cl] 2 (bpm) was reduced more » with cobaltocene; the electron paramagnetic resonance spectrum of the product exhibits an isotropic signal (near g = 2) characteristic of a ligand-centered bpm radical. Our findings highlight the facile synthesis as well as the structural characteristics and unique electrochemical behavior of this family of complexes. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Dalton Transactions
Page Range or eLocation-ID:
2746 to 2756
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Herein, we report the synthesis and characterization of two manganese tricarbonyl complexes, MnI(HL)(CO)3Br (1 a‐Br) and MnI(MeL)(CO)3Br (1 b‐Br) (where HL=2‐(2’‐pyridyl)benzimidazole; MeL=1‐methyl‐2‐(2’‐pyridy)benzimidazole) and assayed their electrocatalytic properties for CO2reduction. A redox‐active pyridine benzimidazole ancillary ligand in complex1 a‐Brdisplayed unique hydrogen atom transfer ability to facilitate electrocatalytic CO2conversion at a markedly lower reduction potential than that observed for1 b‐Br. Notably, a one‐electron reduction of1 a‐Bryields a structurally characterized H‐bonded binuclear Mn(I) adduct (2 a’) rather than the typically observed Mn(0)‐Mn(0) dimer, suggesting a novel method for CO2activation. Combining advanced electrochemical, spectroscopic, and single crystal X‐ray diffraction techniques, we demonstrate the use of an H‐atom responsive ligand may reveal an alternative, low‐energy pathway for CO2activation by an earth‐abundant metal complex catalyst.

  2. 4,5-diazafluorene (daf) and 9,9’-dimethyl-4,5-diazafluorene (Me2daf) are structurally similar to the important ligand 2,2’-bipyridine (bpy), but significantly less is known about the redox and spectroscopic properties of metal complexes containing Me2daf as a ligand than those containing bpy. New complexes Mn(CO)3Br(daf) (2), Mn(CO)3Br(Me2daf) (3), and [Ru(Me2daf)3](PF6)2 (5) have been prepared and fully characterized to understand the influence of the Me2daf framework on their chemical and electrochemical properties. Structural data for 2, 3, and 5 from single-crystal X-ray diffraction analysis reveal a distinctive widening of the daf and Me2daf chelate angles in comparison to the analogous Mn(CO)3(bpy)Br (1) and [Ru(bpy)3]2+ (4) complexes. Electronic absorption data for these complexes confirm the electronic similarity of daf, Me2daf, and bpy, as spectra are dominated in each case by metal-to-ligand charge transfer bands in the visible region. However, the electrochemical properties of 2, 3, and 5 reveal that the redox-active Me2daf framework in 3 and 5 undergoes reduction at a slightly more negative potential than that of bpy in 1 and 4. Taken together, the results indicate that Me2daf could be useful for preparation of a variety of new redox-active compounds, as it retains the useful redox-active nature of bpy but lacks the acidic, benzylic C–Hmore »bonds that can induce secondary reactivity in complexes bearing daf.« less
  3. Herein we report heteroleptic Co( ii ) diimine complexes [Co(H 2 bip) 2 Cl 2 ] ( 1 ), [Co(H 2 bip) 2 Br 2 ] ( 2 ), [Co(H 2 bip) 3 ]Br 2 ·1MeOH ( 3 ) and [Co(H 2 bip) 2 (Me 2 bpy)]Br 2 ·(MeCN) 0.5 ·(H 2 O) 0.25 ( 4 ) (H 2 bip = 2,2′-bi-1,4,5,6-tetrahydropyrimidine, bpy = 2,2′-dipyridyl, Me 2 bpy = 4,4′-Me-2,2′-dipyridyl), purposefully prepared to enable a systematic study of magnetic property changes arising from the increase of overall ligand field from σ/π-donor chlorido ( 1 ) to π-acceptor 4,4′Me-2,2′bpy ( 4 ). The presence of axial and rhombic anisotropy ( D and E ) of these compounds is sufficient to allow 1–4 to show field-induced slow relaxation of magnetization. Interestingly, we found as the effective ligand field is increased in the series, rhombicity ( E / D ) decreases, and the magnetic relaxation profile changes significantly, where relaxation of magnetization at a specific temperature becomes gradually faster. We performed mechanistic analyses of the temperature dependence of magnetic relaxation times considering Orbach relaxation processes, Raman-like relaxation and quantum tunnelling of magnetization (QTM). The effective energy barrier of the Orbach relaxation process (more »U eff ) is largest in compound 1 (19.2 cm −1 ) and gradually decreases in the order 1 > 2 > 3 > 4 giving a minimum value in compound 4 (8.3 cm −1 ), where the Raman-like mechanism showed the possibility of different types of phonon activity below and above ∼2.5 K. As a precursor of 1 , the tetrahedral complex [Co(H 2 bip)Cl 2 ] ( 1a ) was also synthesized and structurally and magnetically characterized: this compound exhibits slow relaxation of magnetization under an applied dc field (1800 Oe) with a record slow relaxation time of 3.39 s at 1.8 K.« less
  4. The synthesis of (PNP)Re(N)X (PNP = [2-P(CHMe 2 ) 2 -4-MeC 6 H 3 ] 2 N, X = Cl and Me) complexes is described. The methylnitridorhenium complex 3 was found to react differently with CO and isocyanides, leading to the isolation of a Re( v ) acyl complex 4 and an isocyanide adduct 6 . Two parallel pathways were observed for the reaction of 3 with CO: (1) CO inserts into the Re–Me bond to afford 4 , and (2) 3 isomerizes by distortion of the aryl backbone of the PNP ligand to afford the isomer 3′ . This is followed by the reaction of 3′ with CO to afford the tricarbonyl complex 5 , which was fully characterized. The contrasting reaction of 3 with 2,6-dimethylphenyl isocyanide lends further support for the proposed isomerization pathway. DFT (M06) calculations suggest that insertion of CNR into the Re–Me bond (27.2 kcal mol −1 ) is inaccessible at room temperature. Instead the substrate adds to the metal center via the most accessible face i.e. syn to the rhenium–nitrido bond, to afford 6 . The addition of CO to isomer 3′ is proposed to proceed with a similar mechanism to 2,6-dimethylphenyl isocyanide.
  5. Abstract

    A series of molecular Mn catalysts featuring aniline groups in the second‐coordination sphere has been developed for electrochemical and photochemical CO2reduction. The arylamine moieties were installed at the 6 position of 2,2’‐bipyridine (bpy) to generate a family of isomers in which the primary amine is located at theortho‐(1‐Mn),meta‐(2‐Mn), orpara‐site (3‐Mn) of the aniline ring. The proximity of the second‐sphere functionality to the active site is a critical factor in determining catalytic performance. Catalyst1‐Mn, possessing the shortest distance between the amine and the active site, significantly outperformed the rest of the series and exhibited a 9‐fold improvement in turnover frequency relative to parent catalyst Mn(bpy)(CO)3Br (901 vs. 102 s−1, respectively) at 150 mV lower overpotential. The electrocatalysts operated with high faradaic efficiencies (≥70 %) for CO evolution using trifluoroethanol as a proton source. Notably, under photocatalytic conditions, a concentration‐dependent shift in product selectivity from CO (at high [catalyst]) to HCO2H (at low [catalyst]) was observed with turnover numbers up to 4760 for formic acid and high selectivities for reduced carbon products.