skip to main content

This content will become publicly available on January 1, 2023

Title: Effect of Laser Forming on the Energy Absorbing Behavior of Metal Foams
Abstract Metal foam is light in weight and exhibits an excellent impact-absorbing capability. Laser forming has emerged as a promising process in shaping metal foam plates into desired geometry. While the feasibility and shaping mechanism has been studied, the effect of the laser forming process on the mechanical properties and the energy-absorbing behavior in particular of the formed foam parts has not been well understood. This study comparatively investigated such effect on as-received and laser-formed closed-cell aluminum alloy foam. In quasi-static compression tests, attention paid to the changes in the elastic region. Imperfections near the laser-irradiated surface were closely examined and used to help elucidate the similarities and differences in as-received and laser-formed specimens. Similarly, from the impact tests, differences in deformation and specific energy absorption were focused on, while relative density distribution and evolution of foam specimens were numerically investigated.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Manufacturing Science and Engineering
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Metal foam sandwich panels have been the subject of many concept studies, due to their exceptional stiffness, light weight, and crash absorption capacity. Yet, the industrial production of the material has been hampered by the fact that it is challenging to bend the material into practical engineering shapes. Only recently, it has been shown that bending of metal foam sandwich panels is possible using lasers. It was also shown that the material can be bent into Euclidean (2D) geometries, and the governing laser-induced bending mechanisms were analyzed. This study was focused on laser forming of metal foam sandwich panelsmore »into non-Euclidean (3D) geometries. It was investigated whether the bending mechanisms and process parameters identified for 2D laser forming translate to 3D deformation. Additionally, the impact of the laser scan length was determined by comparing different scan patterns that achieve the same 3D geometries. It was shown that laser forming could induce 3D deformation necessary for both bowl and saddle shapes, the two fundamental non-Euclidean geometries. The amount of laser-induced bending and in-plane strains vary depending on process conditions and the governing bending mechanisms. Lastly, the laser scan length was shown to become more important for metal foam sandwich panels, where the panel thickness tends to be large.« less
  2. The characteristics of metal and materials are very important to design any component so that it should not fail in the life of the service. The properties of the materials are also an important consideration while setting the manufacturing parameters which deforms the raw material to give the design shape without providing any defect or fracture. For centuries the commonly used method to characterize the material is the traditional uniaxial tension test. The standard has been created for this test by American Standard for Testing Materials (ASTM) – E8. This specimen is traditionally been used to test the materials andmore »extract the properties needed for designing and manufacturing. It should be noted that the uniaxial tension test uses one axis to test the material i.e., the material is pulled in one direction to extract the properties. The data acquired from this test found enough for manufacturing operations of simple forming where one axis stretching is dominant. Recently a sudden increase in the usage of automotive vehicles results in sudden increases in fuel consumption which results in an increase in air pollution. To cope up with this challenge federal government is implying the stricter environmental regulation to decrease air pollution. To save from the environmental regulation penalty vehicle industry is researching innovation which would reduce vehicle weight and decrease fuel consumption. Thus, the innovation related to light-weighting is not only an option anymore but became a mandatory necessity to decrease fuel consumption. To achieve this target, the industry has been looking at fabricating components from high strength to ultra-high strength steels or lightweight materials. This need is driven by the requirement of 54 miles per gallon by 2025. In addition, the complexity in design increased where multiple individual parts are eliminated. This integrated complex part needs the complex manufacturing forming operation as well as the process like warm or hot forming for maximum formability. The complex forming process will induce the multi-axial stress states in the part, which is found difficult to predict using conventional tools like tension test material characterization. In many pieces of literature limiting dome height and bulge tests were suggested analyzing these multi-axial stress states. However, these tests limit the possibilities of applying multi-axial loading and resulting stress patterns due to contact surfaces. Thus, a test machine called biaxial test is devised which would provide the capability to test the specimen in multi-axial stress states with varying load. In this paper, two processes, limiting dome test and biaxial test were experimented to plot the forming limit curve. The forming limit curve serves the tool for the design of die for manufacturing operation. For experiments, the cruciform test specimens were used in both limiting dome test and biaxial test and tested at elevated temperatures. The forming limit curve from both tests was plotted and compared. In addition, the strain path, forming, and formability was investigated and the difference between the tests was provided.« less
  3. Meyendorf, Norbert G. ; Farhangdoust, Saman (Ed.)
    Metal-matrix composites with active components have been investigated as a way to functionalize metals. As opposed to surface-mounted approaches, smart materials embedded in metals can be effectively shielded against the environment while providing in-situ sensing, health monitoring, actuation, or energy harvesting functions. Typical manufacturing approaches can be problematic, however, in that they may physically damage the smart material or degrade its electromechanical properties. For instance, non-resin-based embedment procedures such as powder metallurgy involve isostatic compression and diffusion bonding, leading to high process temperatures and breakdown of the electromechanical properties of the active component to be embedded. This paper presents themore »development and characterization of an aluminum-matrix composite embedded with piezoelectric polyvinylidene fluoride (PVDF) sensors using ultrasonic additive manufacturing (UAM). UAM incorporates the principles of solid-state, ultrasonic metal welding and subtractive processes to fabricate metal-matrices with seamlessly embedded smart materials and without thermal loading. As implemented in this study, the UAM process uses as-received, commercial Al 6061 tape foilstock and TE Connectivity PVDF film. In order to increase the mechanical coupling between the sensor and the metal-matrix without the aid of adhesives, the PVDF sensor is embedded with an empirically optimized pre-compression defined by the tape foils welded above the sensor. The specimen is characterized by tensile (d31 mode), bending (d31 mode), and compression tests (d33 mode) to evaluate its functional performance. Within the investigated load range, the specimen exhibits open-circuit sensitivities of 4.6 mV/N under uniaxial tension and 9.7 mV/N under compressive impulse tests with better than 95% linearity and frequency bandwidth of several kilohertz. The technology presented in this study could be applied for load and tactile sensing, impact detection and localization, thermal measurements, energy harvesting, and non-destructive testing applications.« less
  4. Abstract Profiled hollow core sandwich panels (SPs) and their components (outer layers and core) were manufactured with ponderosa and lodgepole pine wood strands to determine the effects of low-velocity impact forces and to observe their energy absorption (EA) capacities and failure modes. An instrumented drop weight impact system was applied and the tests were performed by releasing the impact head from 500 mm for all the specimens while the impactors (IMPs) were equipped with hemispherical and flat head cylindrical heads. SPs with cavities filled with a rigid foam insulation material (SP foam ) were also tested to understand the changemore »in EA behavior and failure mode. Failure modes induced by both IMPs to SPs were found to be splitting, perforating, penetrating, core crushing and debonding between the core and the outer layers. SP foam s absorbed 26% more energy than unfilled SPs. SP foam s with urethane foam suffer less severe failure modes than SPs. SPs in a ridge-loading configuration absorbed more impact energy than those in a valley-loading configuration, especially when impacted by a hemispherical IMP. Based on the results, it is evident that sandwich structure is more efficient than a solid panel concerning impact energy absorption, primarily due to a larger elastic section modulus of the core’s corrugated geometry.« less
  5. Daehn G., Cao J. (Ed.)
    Controlling the microstructure of components is of interest to achieve optimal final part properties, i.e., materials by design. The manufacturing process itself can affect a material’s characteristics by changing the microstructure. For example, past research has shown that austenite to martensite phase transformation in stainless steel occurs during deformation. Temperature is known to have a significant influence on this phenomenon. In this paper, the effect of temperature on the austenitic to martensite phase transformation in SS 316L under uniaxial tension is investigated. Both a cooling system and a heat exchanger were employed in a uniaxial tension experimental setup to controlmore »the temperature. Tensile specimens were strained to fracture at four temperatures of −15, 0, 10, and 20 °C. Digital imaging correlation (DIC) and a thermal imaging camera were used for tests at 0 °C and above to capture strain and temperature data, respectively. Strain and temperature data could not be obtained at −15 °C due to the DIC paint flaking during testing. X-ray diffraction was used to measure the volume fraction of martensite in both the as-received and the tensile-tested materials.« less