skip to main content


Title: Predicting Mechanical Properties of High-Performance Fiber-Reinforced Cementitious Composites by Integrating Micromechanics and Machine Learning
Current development of high-performance fiber-reinforced cementitious composites (HPFRCC) mainly relies on intensive experiments. The main purpose of this study is to develop a machine learning method for effective and efficient discovery and development of HPFRCC. Specifically, this research develops machine learning models to predict the mechanical properties of HPFRCC through innovative incorporation of micromechanics, aiming to increase the prediction accuracy and generalization performance by enriching and improving the datasets through data cleaning, principal component analysis (PCA), and K-fold cross-validation. This study considers a total of 14 different mix design variables and predicts the ductility of HPFRCC for the first time, in addition to the compressive and tensile strengths. Different types of machine learning methods are investigated and compared, including artificial neural network (ANN), support vector regression (SVR), classification and regression tree (CART), and extreme gradient boosting tree (XGBoost). The results show that the developed machine learning models can reasonably predict the concerned mechanical properties and can be applied to perform parametric studies for the effects of different mix design variables on the mechanical properties. This study is expected to greatly promote efficient discovery and development of HPFRCC.  more » « less
Award ID(s):
2046407
NSF-PAR ID:
10301378
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Materials
Volume:
14
Issue:
12
ISSN:
1996-1944
Page Range / eLocation ID:
3143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate prediction of the sensitivity properties of high-energy materials (HEMs) and the study of their decomposition mechanisms are two major focuses within energetics research. Due to the hazards associated with the synthesis and handling of energetic materials, predictive models for HEM sensitivity are of great importance in enabling the safe and efficient development of future HEMs. Traditional predictive modeling of HEM decomposition via machine learning algorithms generally displays limited interpretability, while mechanistic studies of HEMs typically focus on small subsets of structurally analogous compounds lacking generalizability. This study aims to bridge the gap between predictive modeling and computational mechanistic analysis of HEMs, with the goal of providing chemically interpretable models for HEM sensitivity property prediction. Herein, we disclose the use of multivariate linear regression (MLR) modeling for the prediction of the decomposition temperature and impact sensitivity of HEMs. We report an explosophore-based approach to sensitivity property prediction featuring an ensemble of quantum mechanical parameters and computational workflows that enable rapid parameterization and modeling of energetic functional groups. We then employ these methods to accurately predict sensitivity properties of nitrogen-rich tetrazole and azide HEMs. These statistical MLR models are readily interpreted based on the principles of physical organic chemistry, producing structure-property relationships to guide the rational design of new HEMs. Furthermore, we extend our explosophore-based approach to predict the sensitivity properties of HEMs containing multiple, non-equivalent energetic functional groups through the identification of molecular triggers for the bulk decomposition of HEMs. Finally, we showcase the viability of our methods towards ab initio virtual screening of HEMs through predictive modeling of external test sets of tetrazole HEMs using structures and parameters generated exclusively in silico. 
    more » « less
  2. Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder’s carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models’ prediction performance and interpretability. This research harnesses the power of the random forest (RF) model to predict the compressive strength of LC3. Three feature reduction methods—Pearson correlation, SHapley Additive exPlanations, and variable importance—are employed to analyze the influence of LC3 components and mixture design on compressive strength. Practical guidelines for utilizing these methods on cementitious materials are elucidated. Through the rigorous screening of insignificant variables from the database, the RF model conserves computational resources while also producing high-fidelity predictions. Additionally, a feature enhancement method is utilized, consolidating numerous input variables into a singular feature while feeding the RF model with richer information, resulting in a substantial improvement in prediction accuracy. Overall, this study provides a novel pathway to apply ML to LC3, emphasizing the need to tailor ML models to cement chemistry rather than employing them generically.

     
    more » « less
  3. Abstract

    Ultrahigh temperature ceramics (UHTCs) have melting points above 3000°C and outstanding strength at high temperatures, thus making them apposite structural materials for high‐temperature applications. Di‐borides, nitride, and carbide compounds—processed via various techniques—have been extensively studied and used in the manufacture of UHTCs. Current analytical models, based on our current but incomplete understanding of the theory, are unable to produce a priori predictions of mechanical properties of UHTCs based on their mixture designs and processing parameters. As a result, researchers have to rely on experiments—which are often costly and time‐consuming—to understand composition–structure–performance links in UHTCs. This study employs machine learning (ML) models (i.e., random forest and artificial neural network models) to predict Young's modulus, flexural strength, and fracture toughness of UHTCs in relation to a wide range of mixture designs, processing parameters, and testing conditions. Outcomes demonstrate that adequately trained ML models can yield reliable predictions, a priori, of the three aforesaid mechanical properties. The prediction performance on Young's modulus is superior to flexural strength and fracture toughness. Next, the ML model with the best prediction performance is utilized to evaluate and rank the impacts of input variables on Young's modulus. Finally, on the basis of such classification of consequential and inconsequential input variables, this study develops an easy‐to‐use, closed‐form analytical model to predict Young's modulus of UHTCs. Overall, this study highlights the ability of data‐driven numerical models to complement, or even replace, time‐consuming experiments, thereby accelerating the development of UHTCs.

     
    more » « less
  4. Neighborhood models have allowed us to test many hypotheses regarding the drivers of variation in tree growth, but require considerable computation due to the many empirically supported non-linear relationships they include. Regularized regression represents a far more efficient neighborhood modeling method, but it is unclear whether such an ecologically unrealistic model can provide accurate insights on tree growth. Rapid computation is becoming increasingly important as ecological datasets grow in size, and may be essential when using neighborhood models to predict tree growth beyond sample plots or into the future. We built a novel regularized regression model of tree growth and investigated whether it reached the same conclusions as a commonly used neighborhood model, regarding hypotheses of how tree growth is influenced by the species identity of neighboring trees. We also evaluated the ability of both models to interpolate the growth of trees not included in the model fitting dataset. Our regularized regression model replicated most of the classical model’s inferences in a fraction of the time without using high-performance computing resources. We found that both methods could interpolate out-of-sample tree growth, but the method making the most accurate predictions varied among focal species. Regularized regression is particularly efficient for comparing hypotheses because it automates the process of model selection and can handle correlated explanatory variables. This feature means that regularized regression could also be used to select among potential explanatory variables (e.g., climate variables) and thereby streamline the development of a classical neighborhood model. Both regularized regression and classical methods can interpolate out-of-sample tree growth, but future research must determine whether predictions can be extrapolated to trees experiencing novel conditions. Overall, we conclude that regularized regression methods can complement classical methods in the investigation of tree growth drivers and represent a valuable tool for advancing this field toward prediction. 
    more » « less
  5. null (Ed.)
    Abstract Measuring soil health indicators (SHIs), particularly soil total nitrogen (TN), is an important and challenging task that affects farmers’ decisions on timing, placement, and quantity of fertilizers applied in the farms. Most existing methods to measure SHIs are in-lab wet chemistry or spectroscopy-based methods, which require significant human input and effort, time-consuming, costly, and are low-throughput in nature. To address this challenge, we develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing solution (UMS) to estimate soil TN in an agricultural farm. TN is an important macro-nutrient or SHI that directly affects the crop health. Accurate prediction of soil TN can significantly increase crop yield through informed decision making on the timing of seed planting, and fertilizer quantity and timing. The ground-truth data required to train the AI approaches is generated via laser-induced breakdown spectroscopy (LIBS), which can be readily used to characterize soil samples, providing rapid chemical analysis of the samples and their constituents (e.g., nitrogen, potassium, phosphorus, calcium). Although LIBS was previously applied for soil nutrient detection, there is no existing study on the integration of LIBS with UAV multispectral imaging and AI. We train two machine learning (ML) models including multi-layer perceptron regression and support vector regression to predict the soil nitrogen using a suite of data classes including multispectral characteristics of the soil and crops in red (R), near-infrared, and green (G) spectral bands, computed vegetation indices (NDVI), and environmental variables including air temperature and relative humidity (RH). To generate the ground-truth data or the training data for the machine learning models, we determine the N spectrum of the soil samples (collected from a farm) using LIBS and develop a calibration model using the correlation between actual TN of the soil samples and the maximum intensity of N spectrum. In addition, we extract the features from the multispectral images captured while the UAV follows an autonomous flight plan, at different growth stages of the crops. The ML model’s performance is tested on a fixed configuration space for the hyper-parameters using various hyper-parameter optimization techniques at three different wavelengths of the N spectrum. 
    more » « less