skip to main content


Title: Trap-dominated nitrogen dioxide and ammonia responses of air-stable p-channel conjugated polymers from detailed bias stress analysis
The improvement of conjugated polymer-based gas sensors involves fine tuning the backbone electronic structure and solid-state microstructure to combine high stability and sensitivity. We had previously developed a series of diketopyrrolopyrrole (DPP)-based polymer semiconductors by introducing a variety of fluorene linkers to study the trends and mechanisms governing gas sensitivities and electronic stability in air and under gate and drain bias stress. The proportional on-current change of organic field-effect transistors (OFETs) using a dithienyl DPP–fluorene polymer reached ∼600% for a sequential exposure from 0.5–20 ppm of NO 2 for 5 minutes and also a high response-to-drift ratio under dynamic bias stress. In the present work we specify the roles of static bias stress and traps in the sensing process for the first time. Apart from electronic structure, defects at the molecular and microstructural levels govern the ability to form and sustain traps and subsequent backbone dopability. A polymer with a twisted backbone was observed to be capable of creating an energetically broad trap distribution while a polymer with a high degree of solid-state order shows a tendency to form an energetically narrow trap distribution and a fast passivation of traps on exposure to air. The stability and energetic distribution of traps on subjecting the polymers to bias stress was related to electronic structure and solid-state packing; and the ability of NO 2 and NH 3 to fill/create traps further was evaluated. At a bias stress condition of V G = V D = −80 V, the polymers retain their NO 2 sensitivity both post NO 2 -aided recovery and air-aided recovery. In order to verify the ability of NH 3 to create traps, traps were erased from the OFET sensors by charging with the aid of a positive gate voltage leading to an increase in the NH 3 response when compared to air controls. This work demonstrates that the charge-trap filling and generation response mechanism is predominant and can even be leveraged for higher responses to vapors. Backbone dopability appears to be a minor contributor to responses in this category of polymeric semiconductors with engineered defects. Finally, bias stress generally does not preclude this category of OFET vapor sensors from recovering their original sensitivities.  more » « less
Award ID(s):
1807293
NSF-PAR ID:
10301451
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
9
Issue:
10
ISSN:
2050-7526
Page Range / eLocation ID:
3531 to 3545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Numerous strategies are developed to impart stretchability to polymer semiconductors. Although these methods improve the ductility, mobility, and stability of such stretchable semiconductors, they nonetheless still need further improvement. Here, it is shown that 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) is an effective molecular additive to tune the properties of a diketopyrrolopyrrole‐based (DPP‐based) semiconductor. Specifically, the addition of F4‐TCNQ is observed to improve the ductility of the semiconductor by altering the polymer’s microstructures and dynamic motions. As a p‐type dopant additive, F4‐TCNQ can also effectively enhance the mobility and stability of the semiconductor through changing the host polymer’s packing structures and charge trap passivation. Upon fabricating fully stretchable transistors with F4‐TCNQ‐DPP blended semiconductor films, it is observed that the resulting stretchable transistors possess one of the highest initial mobility of 1.03 cm2V−1s−1. The fabricated transistors also exhibit higher stability (both bias and environmental) and mobility retention under repeated strain, compared to those without F4‐TCNQ additive. These findings offer a new direction of research on stretchable semiconductors to facilitate future practical applications.

     
    more » « less
  2. Abstract

    Operational stability and sensitivity are key issues for the practical application of organic field‐effect‐transistor (OFET)‐based sensors. Instability over time due to intrinsic device bias stress and conductance drift induced by the ambient environment can obscure responses to analytes of interest. These instabilities are well‐known hindrances to the practical application of OFET sensors. It is demonstrated for the first time that an innovative and simple two‐OFET circuit design can effectively compensate the drifts originating from bias stress and/or the environment while maintaining chemical sensitivity and increasing signal‐to‐noise ratio. This is enabled by illumination of one photosensitive OFET to compensate the drift of the other chemical‐sensing OFET, though in principle a pair of OFETs with opposing drifts generated by any mechanism could be used. The circuit, compared with individual OFET‐based sensors, achieves significantly increased environmental stability, and its enhanced response to chemical vapors is also demonstrated by detecting the representative pollutants nitrogen dioxide (NO2) and ammonia (NH3). This shows that OEFTs with drifts being compensated by any mechanism can lead to stabilized sensor circuits.

     
    more » « less
  3. Abstract

    Efficient doping of polymer semiconductors is required for high conductivity and efficient thermoelectric performance. Lewis acids, e.g., B(C6F5)3, have been widely employed as dopants, but the mechanism is not fully understood. 1:1 “Wheland type” or zwitterionic complexes of B(C6F5)3are created with small conjugated molecules 3,6‐bis(5‐(7‐(5‐methylthiophen‐2‐yl)‐2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)thiophen‐2‐yl)‐2,5‐dioctyl‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione [oligo_DPP(EDOT)2] and 3,6‐bis(5''‐methyl‐[2,2':5',2''‐terthiophen]‐5‐yl)‐2,5‐dioctyl‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione [oligo_DPP(Th)2]. Using a wide variety of experimental and computational approaches, the doping ability of these Wheland Complexes with B(C6F5)3are characterized for five novel diketopyrrolopyrrole‐ethylenedioxythiophene (DPP‐EDOT)‐based conjugated polymers. The electrical properties are a strong function of the specific conjugated molecule constituting the adduct, rather than acidic protons generated via hydrolysis of B(C6F5)3, serving as the oxidant. It is highly probable that certain repeat units/segments form adduct structures inp‐type conjugated polymers which act as intermediates for conjugated polymer doping. Electronic and optical properties are consistent with the increase in hole‐donating ability of polymers with their cumulative donor strengths. The doped film of polymer (DPP(EDOT)2‐(EDOT)2) exhibits exceptionally good thermal and air‐storage stability. The highest conductivities, ≈300 and ≈200 S cm−1, are achieved for DPP(EDOT)2‐(EDOT)2doped with B(C6F5)3and its Wheland complexes.

     
    more » « less
  4. Abstract

    A high performance diketopyrrolopyrrole (DPP)–based semiconducting polymer is modified with ligands to enable metal coordination, and its subsequent effect as field‐effect transistors is investigated. In specific, pyridine‐2,6‐dicarboxamide (PDCA) units are incorporated in a DPP–based polymer backbone with a content from 0 to 30 mol%, and the resulting polymers are then mixed with Fe(II) ions. The coordination and spontaneous oxidation converts Fe(II) to Fe(III) ions to result in Fe(III)‐containing metallopolymers. The resulting metallopolymers are observed to show good solubility in organic solvents and can be easily processed as thin films. The charge transport characteristics are subsequently investigated through the fabrication of field–effect transistor devices, in which an enhanced charge carrier mobility with the Fe(III)‐containing metallopolymers is observed. In specific, an almost twofold improvement in the charge carrier mobility is obtained for the 20% PDCA‐containing polymer after Fe coordination (from 0.96 to 1.84 cm2V−1s−1). Furthermore, the operation stability of the metallopolymer‐based devices is found to be significantly improved with low bias stress. Its superior electrical characteristics are attributed to the doping effect of the Fe ions. This study indicates that incorporation of appropriate metallic ions to polymer presents a viable approach to enhance the performance of polymer–based transistor devices.

     
    more » « less
  5. Abstract

    Conjugated polymers have gained momentum as serious contenders for next‐generation flexible electronics, but their susceptibility to water represents a major problem. Atmospheric water is ubiquitous and its inadvertent diffusion into polymeric devices generates charge carrier traps, reducing their performance and stability. A good understanding of the physical processes associated with the presence of water is therefore necessary in order to be able to suppress the related trapping events and enable stable, high‐performance devices. Here, evidence is shown that water introduces traps in the bandgap of organic semiconductors and the impact of these traps on the electrical properties of polymer organic field‐effect transistors (OFETs) based on indacenodithiophene‐co‐benzothiadiazole (IDT‐BT) is investigated. Monitoring device parameters and the trap density of states (t‐DOS) during moisture extrication reveals the existence of two types of water‐related traps: shallow traps originating from water inhabiting the voids of the polymer film and deeper traps arising from chemisorbed water present at the dielectric/polymer interface. A trap passivation method based on flame‐annealing is introduced to eliminate the interfacial traps. As a result, stable OFETs, with threshold voltage shifts less than ΔVth = −0.3 V and constant mobilities (<10% variation) after three months of storage, are fabricated.

     
    more » « less