skip to main content

Title: Testing stomatal models at the stand level in deciduous angiosperm and evergreen gymnosperm forests using CliMA Land (v0.1)
Abstract. At the leaf level, stomata control the exchange of water and carbon across the air–leaf interface. Stomatal conductance is typically modeledempirically, based on environmental conditions at the leaf surface. Recently developed stomatal optimization models show great skills at predictingcarbon and water fluxes at both the leaf and tree levels. However, how well the optimization models perform atlarger scales has not been extensively evaluated. Furthermore, stomatal models are often used with simple single-leaf representations of canopy radiative transfer (RT), such asbig-leaf models. Nevertheless, the single-leaf canopy RT schemes do not have the capability to model optical properties of the leaves nor the entirecanopy. As a result, they are unable to directly link canopy optical properties with light distribution within the canopy to remote sensing dataobserved from afar. Here, we incorporated one optimization-based and two empirical stomatal models with a comprehensive RT model in the landcomponent of a new Earth system model within CliMA, the Climate Modelling Alliance. The model allowed us to simultaneously simulate carbon and waterfluxes as well as leaf and canopy reflectance and fluorescence spectra. We tested our model by comparing our modeled carbon and water fluxes andsolar-induced chlorophyll fluorescence (SIF) to two flux tower observations (a gymnosperm more » forest and an angiosperm forest) and satellite SIFretrievals, respectively. All three stomatal models quantitatively predicted the carbon and water fluxes for both forests. The optimization model,in particular, showed increased skill in predicting the water flux given the lower error (ca. 14.2 % and 21.8 % improvement for thegymnosperm and angiosperm forests, respectively) and better 1:1 comparison (slope increases from ca. 0.34 to 0.91 for the gymnosperm forest andfrom ca. 0.38 to 0.62 for the angiosperm forest). Our model also predicted the SIF yield, quantitatively reproducing seasonal cycles for bothforests. We found that using stomatal optimization with a comprehensive RT model showed high accuracy in simulating land surface processes. Theever-increasing number of regional and global datasets of terrestrial plants, such as leaf area index and chlorophyll contents, will helpparameterize the land model and improve future Earth system modeling in general. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1637686
Publication Date:
NSF-PAR ID:
10301462
Journal Name:
Geoscientific Model Development
Volume:
14
Issue:
11
Page Range or eLocation-ID:
6741 to 6763
ISSN:
1991-9603
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Evaporation (E) and transpiration (T) respond differentlyto ongoing changes in climate, atmospheric composition, and land use. It isdifficult to partition ecosystem-scale evapotranspiration (ET) measurementsinto E and T, which makes it difficult to validate satellite data and landsurface models. Here, we review current progress in partitioning E and T andprovide a prospectus for how to improve theory and observations goingforward. Recent advancements in analytical techniques create newopportunities for partitioning E and T at the ecosystem scale, but theirassumptions have yet to be fully tested. For example, many approaches topartition E and T rely on the notion that plant canopy conductance andecosystem water use efficiency exhibit optimal responses to atmosphericvapor pressure deficit (D). We use observations from 240 eddy covariance fluxtowers to demonstrate that optimal ecosystem response to D is a reasonableassumption, in agreement with recent studies, but more analysis is necessaryto determine the conditions for which this assumption holds. Anothercritical assumption for many partitioning approaches is that ET can beapproximated as T during ideal transpiring conditions, which has beenchallenged by observational studies. We demonstrate that T can exceed 95 %of ET from certain ecosystems, but other ecosystems do not appear to reachthis value, which suggests that this assumption is ecosystem-dependent withimplicationsmore »for partitioning. It is important to further improve approachesfor partitioning E and T, yet few multi-method comparisons have beenundertaken to date. Advances in our understanding of carbon–water couplingat the stomatal, leaf, and canopy level open new perspectives on how toquantify T via its strong coupling with photosynthesis. Photosynthesis can beconstrained at the ecosystem and global scales with emerging data sourcesincluding solar-induced fluorescence, carbonyl sulfide flux measurements,thermography, and more. Such comparisons would improve our mechanisticunderstanding of ecosystem water fluxes and provide the observationsnecessary to validate remote sensing algorithms and land surface models tounderstand the changing global water cycle.« less
  2. Abstract. During the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET) campaign from 21 July to 3 August 2016,field experiments on leaf-level trace gas exchange of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) were conducted for thefirst time on the native American tree species Pinus strobus (eastern white pine), Acer rubrum (redmaple), Populus grandidentata (bigtooth aspen), and Quercus rubra (red oak) in a temperate hardwood forest inMichigan, USA. We measured the leaf-level trace gas exchange rates andinvestigated the existence of an NO2 compensation point, hypothesizedbased on a comparison of a previously observed average diurnal cycle ofNOx (NO2+NO) concentrations with that simulated using amulti-layer canopy exchange model. Known amounts of trace gases wereintroduced into a tree branch enclosure and a paired blank referenceenclosure. The trace gas concentrations before and after the enclosures weremeasured, as well as the enclosed leaf area (single-sided) and gas flow rate to obtain the trace gas fluxes with respect to leaf surface. There was nodetectable NO uptake for all tree types. The foliar NO2 and O3uptake largely followed a diurnal cycle, correlating with that of the leafstomatal conductance. NO2 and O3 fluxes were driven by theirconcentration gradient from ambient to leaf internal space. The NO2 lossmore »rate at the leaf surface, equivalently the foliar NO2 deposition velocity toward the leaf surface, ranged from 0 to 3.6 mm s−1 for bigtooth aspen and from 0 to 0.76 mm s−1 for red oak, both of which are∼90 % of the expected values based on the stomatalconductance of water. The deposition velocities for red maple and white pineranged from 0.3 to 1.6 and from 0.01 to 1.1 mm s−1, respectively, and were lower than predicted from the stomatal conductance, implying amesophyll resistance to the uptake. Additionally, for white pine, theextrapolated velocity at zero stomatal conductance was 0.4±0.08 mm s−1, indicating a non-stomatal uptake pathway. The NO2compensation point was ≤60 ppt for all four tree species andindistinguishable from zero at the 95 % confidence level. This agrees withrecent reports for several European and California tree species butcontradicts some earlier experimental results where the compensation pointswere found to be on the order of 1 ppb or higher. Given that the sampledtree types represent 80 %–90 % of the total leaf area at this site, theseresults negate the previously hypothesized important role of a leaf-scaleNO2 compensation point. Consequently, to reconcile these findings,further detailed comparisons between the observed and simulated in- and above-canopy NOx concentrations and the leaf- and canopy-scaleNOx fluxes, using the multi-layer canopy exchange model withconsideration of the leaf-scale NOx deposition velocities as well asstomatal conductances reported here, are recommended.« less
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. Abstract Increasing concentrations of CO 2 in the atmosphere influence climate both through CO 2 ’s role as a greenhouse gas and through its impact on plants. Plants respond to atmospheric CO 2 concentrations in several ways that can alter surface energy and water fluxes and thus surface climate, including changes in stomatal conductance, water use, and canopy leaf area. These plant physiological responses are already embedded in most Earth system models, and a robust literature demonstrates that they can affect global-scale temperature. However, the physiological contribution to transient warming has yet to be assessed systematically in Earth system models. Here this gap is addressed using carbon cycle simulations from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) to isolate the radiative and physiological contributions to the transient climate response (TCR), which is defined as the change in globally averaged near-surface air temperature during the 20-yr window centered on the time of CO 2 doubling relative to preindustrial CO 2 concentrations. In CMIP6 models, the physiological effect contributes 0.12°C ( σ : 0.09°C; range: 0.02°–0.29°C) of warming to the TCR, corresponding to 6.1% of the full TCR ( σ : 3.8%; range: 1.4%–13.9%). Moreover, variation in themore »physiological contribution to the TCR across models contributes disproportionately more to the intermodel spread of TCR estimates than it does to the mean. The largest contribution of plant physiology to CO 2 -forced warming—and the intermodel spread in warming—occurs over land, especially in forested regions.« less
  5. Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accountingmore »for inter-site variation, probably due to differences in canopy structure. Seasonally averaged leaf area index, fraction of absorbed photosynthetically active radiation (fPAR) and canopy conductance provide a predictor to the site-level effect. We show that fPAR is the main factor driving errors in the linear model at high temporal resolution. Adding water stress indicators, namely canopy conductance, to a multi-linear SIF-based GPP model provides the best improvement in the model precision at the three considered timescales, showing the importance of accounting for water stress in GPP predictions, independent of the SIF signal. SIF is a promising predictor for GPP among other remote sensing variables, but more focus should be placed on including canopy structure, and water stress effects in the relationship, especially when considering intra-seasonal, and inter- and intra-daily resolutions.« less