skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Testing stomatal models at the stand level in deciduous angiosperm and evergreen gymnosperm forests using CliMA Land (v0.1)
Abstract. At the leaf level, stomata control the exchange of water and carbon across the air–leaf interface. Stomatal conductance is typically modeledempirically, based on environmental conditions at the leaf surface. Recently developed stomatal optimization models show great skills at predictingcarbon and water fluxes at both the leaf and tree levels. However, how well the optimization models perform atlarger scales has not been extensively evaluated. Furthermore, stomatal models are often used with simple single-leaf representations of canopy radiative transfer (RT), such asbig-leaf models. Nevertheless, the single-leaf canopy RT schemes do not have the capability to model optical properties of the leaves nor the entirecanopy. As a result, they are unable to directly link canopy optical properties with light distribution within the canopy to remote sensing dataobserved from afar. Here, we incorporated one optimization-based and two empirical stomatal models with a comprehensive RT model in the landcomponent of a new Earth system model within CliMA, the Climate Modelling Alliance. The model allowed us to simultaneously simulate carbon and waterfluxes as well as leaf and canopy reflectance and fluorescence spectra. We tested our model by comparing our modeled carbon and water fluxes andsolar-induced chlorophyll fluorescence (SIF) to two flux tower observations (a gymnosperm forest and an angiosperm forest) and satellite SIFretrievals, respectively. All three stomatal models quantitatively predicted the carbon and water fluxes for both forests. The optimization model,in particular, showed increased skill in predicting the water flux given the lower error (ca. 14.2 % and 21.8 % improvement for thegymnosperm and angiosperm forests, respectively) and better 1:1 comparison (slope increases from ca. 0.34 to 0.91 for the gymnosperm forest andfrom ca. 0.38 to 0.62 for the angiosperm forest). Our model also predicted the SIF yield, quantitatively reproducing seasonal cycles for bothforests. We found that using stomatal optimization with a comprehensive RT model showed high accuracy in simulating land surface processes. Theever-increasing number of regional and global datasets of terrestrial plants, such as leaf area index and chlorophyll contents, will helpparameterize the land model and improve future Earth system modeling in general.  more » « less
Award ID(s):
1637686
NSF-PAR ID:
10301462
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
14
Issue:
11
ISSN:
1991-9603
Page Range / eLocation ID:
6741 to 6763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent advances in satellite observations of solar‐induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf‐level to canopy‐level is usually not well‐represented. Here, we incorporate the simulation of far‐red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf‐level fluorescence yield was simulated by a parametric simplification of the Soil Canopy‐Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf‐level to top‐of‐canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R2 > 0.91, root‐mean‐square error <0.19 W⋅m−2⋅sr−1⋅μm−1), and captured the day‐to‐day variation of tower‐measured SIF at temperate forest sites (R2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite‐observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations.

     
    more » « less
  2. Abstract

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf‐level ChlF was linked with canopy‐scale solar‐induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts,USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R= 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively;P < 0.0001). We developed a model to estimateGPPfrom the tower‐based measurement ofSIFand leaf‐level ChlF parameters. The estimation ofGPPfrom this model agreed well with flux tower observations ofGPP(R= 0.68;P < 0.0001), demonstrating the potential ofSIFfor modelingGPP. At the leaf scale, we found that leafFq/Fm, the fraction of absorbed photons that are used for photochemistry for a light‐adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopySIFyield (SIF/APAR,R= 0.79;P < 0.0001). We also found that canopySIFandSIF‐derivedGPP(GPPSIF) were strongly correlated to leaf‐level biochemistry and canopy structure, including chlorophyll content (R= 0.65 for canopyGPPSIFand chlorophyll content;P < 0.0001), leaf area index (LAI) (R= 0.35 for canopyGPPSIFandLAI;P < 0.0001), and normalized difference vegetation index (NDVI) (R= 0.36 for canopyGPPSIFandNDVI;P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.

     
    more » « less
  3. Abstract

    The plant hydrodynamic approach represents a recent advancement to land surface modeling, in which stomatal conductance responds to water availability in the xylem rather than in the soil. To provide a realistic representation of tree hydrodynamics, hydrodynamic models must resolve processes at the level of a single modeled tree, and then scale the resulting fluxes to the canopy and land surface. While this tree‐to‐canopy scaling is trivial in a homogeneous canopy, mixed‐species canopies require careful representation of the species properties and a scaling approach that results in a realistic description of both the canopy and individual‐tree hydrodynamics, as well as leaf‐level fluxes from the canopy and their forcing. Here, we outline advantages and pitfalls of three commonly used approaches for representing mixed forests in land surface models and present a new framework for scaling vegetation characteristics and fluxes in mixed forests. The new formulation scales fluxes from the tree to canopy level in an energy‐ and mass‐conservative way and allows for a consistent multi‐species/multi‐type canopy description by hydrodynamic models.

     
    more » « less
  4. Abstract

    Tropical forest canopies cycle vast amounts of carbon, yet we still have a limited understanding of how these critical ecosystems will respond to climate warming. We implemented in situ leaf‐level + 3°C experimental warming from the understory to the upper canopy of two Puerto Rican tropical tree species,Guarea guidoniaandOcotea sintenisii. After approximately 1 month of continuous warming, we assessed adjustments in photosynthesis, chlorophyll fluorescence, stomatal conductance, leaf traits and foliar respiration. Warming did not alter net photosynthetic temperature response for either species; however, the optimum temperature ofOcoteaunderstory leaf photosynthetic electron transport shifted upward. There was noOcotearespiratory treatment effect, whileGuarearespiratory temperature sensitivity (Q10) was down‐regulated in heated leaves. The optimum temperatures for photosynthesis (Topt) decreased 3–5°C from understory to the highest canopy position, perhaps due to upper canopy stomatal conductance limitations.Guareaupper canopyToptwas similar to the mean daytime temperatures, whileOcoteacanopy leaves often operated aboveTopt. With minimal acclimation to warmer temperatures in the upper canopy, further warming could put these forests at risk of reduced CO2uptake, which could weaken the overall carbon sink strength of this tropical forest.

     
    more » « less
  5. Recently, solar-induced chlorophyll fluorescence (SIF) is a promising tool to estimate gross primary production (GPP). Photosynthesis gradually saturates with the increasing light, but fluorescence tends to keep increasing, leading to a nonlinear SIF-GPP relationship. This nonlinearity occurs for sunlit leaves but not for shaded leaves for which photosynthesis is light-limited. However, the separation of sunlit and shaded SIF has not been systematically investigated when estimating GPP from SIF. Therefore, it is promising to develop a model for GPP estimation considering such differences. This study proposed an approach to separate the total canopy SIF emission (SIFtotal) from TROPOspheric Monitoring Instrument (TROPOMI) SIF into their sunlit and shaded components (SIFsun and SIFshade). The nonlinearity and linearity in SIF-GPP relationships for sunlit and shaded leaves were incorporated into a two-leaf hybrid model, which was fitted using flux tower data and then evaluated using leave-one-site-out crossing validation. We also elucidated the distinct SIF-GPP relationships between sunlit and shaded leaves using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model simulation. Compared to previously used linear (R2 = 0.68, RMSE = 2.13 gC⋅m^-2*d^-1) or hyperbolic (R2 = 0.72, RMSE = 2.01 gC⋅m^-2⋅d^-1) model based on the big-leaf assumption, our proposed two-leaf hybrid model has the best performance on GPP estimation (R2 = 0.77, RMSE = 1.79 gC⋅m^-2⋅d^-1). We also applied this two-leaf hybrid model to estimate the global GPP during the main growing season in Northern Hemisphere, which were highly correlated with several existing GPP products, with R2 ranging from 0.79 to 0.88. These results will improve our understanding of the relationship between SIF and GPP for sunlit and shaded leaves and will advance application of satellite SIF data to GPP estimation. 
    more » « less