Low-dimensional quantum systems can host anyons, particles with exchange statistics that are neither bosonic nor fermionic. However, the physics of anyons in one dimension remains largely unexplored. In this work, we realize Abelian anyons in one dimension with arbitrary exchange statistics using ultracold atoms in an optical lattice, where we engineer the statistical phase through a density-dependent Peierls phase. We explore the dynamical behavior of two anyons undergoing quantum walks and observe the anyonic Hanbury Brown–Twiss effect as well as the formation of bound states without on-site interactions. Once interactions are introduced, we observe spatially asymmetric transport in contrast to the symmetric dynamics of bosons and fermions. Our work forms the foundation for exploring the many-body behavior of one-dimensional anyons.
more »
« less
Quantum Heat Engines with Singular Interactions
By harnessing quantum phenomena, quantum devices have the potential to outperform their classical counterparts. Here, we examine using wave function symmetry as a resource to enhance the performance of a quantum Otto engine. Previous work has shown that a bosonic working medium can yield better performance than a fermionic medium. We expand upon this work by incorporating a singular interaction that allows the effective symmetry to be tuned between the bosonic and fermionic limits. In this framework, the particles can be treated as anyons subject to Haldane’s generalized exclusion statistics. Solving the dynamics analytically using the framework of “statistical anyons”, we explore the interplay between interparticle interactions and wave function symmetry on engine performance.
more »
« less
- Award ID(s):
- 2010127
- PAR ID:
- 10301544
- Date Published:
- Journal Name:
- Symmetry
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 2073-8994
- Page Range / eLocation ID:
- 978
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
[This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] We discuss how research on student difficulties was used as a guide to develop, validate, and evaluate a Quantum Interactive Learning Tutorial (QuILT) to help students learn how to determine the completely symmetric bosonic or completely antisymmetric fermionic wave function and be able to compare and contrast them from the case when the particles can be treated as distinguishable. We discuss how explicit scaffolding is designed via guided teaching-learning sequences for two- or three-particle bosonic and fermionic systems to help students develop intuition about how to construct completely symmetric and antisymmetric wave function, both when spin part of the wave function is ignored and when both spatial and spin degrees of freedom are included. Published by the American Physical Society2025more » « less
-
null (Ed.)A bstract We study two-dimensional celestial conformal field theory describing four- dimensional $$ \mathcal{N} $$ N =1 supergravity/Yang-Mills systems and show that the underlying symmetry is a supersymmetric generalization of BMS symmetry. We construct fermionic conformal primary wave functions and show how they are related via supersymmetry to their bosonic partners. We use soft and collinear theorems of supersymmetric Einstein-Yang- Mills theory to derive the OPEs of the operators associated to massless particles. The bosonic and fermionic soft theorems are shown to form a sequence under supersymmetric Ward identities. In analogy with the energy momentum tensor, the supercurrents are shadow transforms of soft gravitino operators and generate an infinite-dimensional super- symmetry algebra. The algebra of $$ {\mathfrak{sbms}}_4 $$ sbms 4 generators agrees with the expectations based on earlier work on the asymptotic symmetry group of supergravity. We also show that the supertranslation operator can be written as a product of holomorphic and anti-holomorphic supercurrents.more » « less
-
In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons and fermions. Here we show how this fundamental concept can be applied to connect bosonic and fermionic lattice models in the realm of condensed matter physics, e.g., to identify a variety of (bosonic) phonon and magnon lattice models which admit topologically nontrivial free fermion models as superpartners. At the single-particle level, the bosonic and the fermionic models that are generated by the SUSY are isospectral except for zero modes, such as flat bands, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences and discuss further ramifications such as the definition of supersymmetric topological invariants for generic bosonic systems. Notably, a Hermitian form of the supercharge operator, the generator of the SUSY, can itself be interpreted as a hopping Hamiltonian on a bipartite lattice. This allows us to identify a wide class of interconnected lattices whose tight-binding Hamiltonians are superpartners of one another or can be derived via squaring or square-rooting their energy spectra all the while preserving band topology features. We introduce a five-fold way symmetry classification scheme of these SUSY lattice correspondences, including cases with a non-zero Witten index, based on a topological classification of the underlying Hermitian supercharge operator. These concepts are illustrated for various explicit examples including frustrated magnets, Kitaev spin liquids, and topological superconductors.more » « less
-
The Ginzburg-Landau (GL) theory is very successful in describing the pairing symmetry, a fundamental characterization of the broken symmetries in a paired superfluid or superconductor. However, GL theory does not describe fermionic excitations such as Bogoliubov quasiparticles or Andreev bound states that are directly related to topological properties of the superconductor. In this work, we show that the symmetries of the fermionic excitations are captured by a Projective Symmetry Group (PSG), which is a group extension of the bosonic symmetry group in the superconducting state. We further establish a correspondence between the pairing symmetry and the fermion PSG. When the normal and superconducting states share the same spin rotational symmetry, there is a simpler correspondence between the pairing symmetry and the fermion PSG, which we enumerate for all 32 crystalline point groups. We also discuss the general framework for computing PSGs when the spin rotational symmetry is spontaneously broken in the superconducting state. This PSG formalism leads to experimental consequences, and as an example, we show how a given pairing symmetry dictates the classification of topological superconductivity.more » « less
An official website of the United States government

