skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermohaline layering on the microscale
A theoretical model is developed which illustrates the dynamics of layering instability, frequently realized in ocean regions with active fingering convection. Thermohaline layering is driven by the interplay between large-scale stratification and primary double-diffusive instabilities operating at the microscale – temporal and spatial scales set by molecular dissipation. This interaction is described by a combination of direct numerical simulations and an asymptotic multiscale model. The multiscale theory is used to formulate explicit and dynamically consistent flux laws, which can be readily implemented in large-scale analytical and numerical models. Most previous theoretical investigations of thermohaline layering were based on the flux-gradient model, which assumes that the vertical transport of density components is uniquely determined by their local background gradients. The key deficiency of this approach is that layering instabilities predicted by the flux-gradient model have unbounded growth rates at high wavenumbers. The resulting ultraviolet catastrophe precludes the analysis of such basic properties of layering instability as its preferred wavelength or the maximal growth rate. The multiscale model, on the other hand, incorporates hyperdiffusion terms that stabilize short layering modes. Overall, the presented theory carries the triple advantage of (i) offering an explicit description of the interaction between microstructure and layering modes, (ii) taking into account the influence of non-uniform stratification on microstructure-driven mixing, and (iii) avoiding unphysical behaviour of the flux-gradient laws at small scales. While the multiscale approach to the parametrization of time-dependent small-scale processes is illustrated here on the example of fingering convection, we expect the proposed technique to be readily adaptable to a wide range of applications.  more » « less
Award ID(s):
1756491
PAR ID:
10301709
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
862
ISSN:
0022-1120
Page Range / eLocation ID:
672 to 695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Arctic halocline is generally stable to the development of double-diffusive and dynamic instabilities – the two major sources of small-scale mixing in the mid-latitude oceans. Despite this, observations show the abundance of double-diffusive staircases in the Arctic Ocean, which suggests the presence of some destabilizing process facilitating the transition from smooth-gradient to layered stratification. Recent studies have shown that an instability can develop in such circumstances if weak static shear is present even when the flow is dynamically and diffusively stable. However, the impact of oscillating shear, associated with the presence of internal gravity waves, has not yet been addressed for the diffusive case. Through two-dimensional simulations of diffusive convection, we have investigated the impact of the magnitude and frequency of externally forced oscillatory shear on the thermohaline-shear instability. Simulations with stochastic shear – characterized by a continuous spectrum of frequencies from inertial to buoyancy – indicate that thermohaline layering does occur due to the presence of destabilizing modes (oscillations of near the buoyancy frequency). These simulations show that such layers appear as well-defined steps in the temperature and salinity profiles. Thus, the thermohaline-shear instability is a plausible mechanism for staircase formation in the Arctic and merits substantial future study. 
    more » « less
  2. Abstract Fingering convection (also known as thermohaline convection) is a process that drives the vertical transport of chemical elements in regions of stellar radiative zones where the mean molecular weight increases with radius. Recently, Harrington & Garaud used three-dimensional direct numerical simulations (DNS) to show that a vertical magnetic field can dramatically enhance the rate of chemical mixing by fingering convection. Furthermore, they proposed a so-called “parasitic saturation” theory to model this process. Here, we test their model over a broad range of parameter space, using a suite of DNS of magnetized fingering convection, varying the magnetic Prandtl number, magnetic field strength, and composition gradient. We find that the rate of chemical mixing measured in the simulations is not always predicted accurately by their existing model, in particular when the magnetic diffusivity is large. We then present an extension of the Harrington & Garaud model which resolves this issue. When applied to stellar parameters, it recovers the results of Harrington & Garaud except in the limit where fingering convection becomes marginally stable, where the new model is preferred. We discuss the implications of our findings for stellar structure and evolution. 
    more » « less
  3. Abstract This study presents the linear theory of thermohaline‐shear instability, which is realized in oceanic flows that are dynamically and diffusively stable. The framework is based on the unbounded Couette model, which makes it possible to decouple the destabilizing effects of spatially uniform shear from instabilities caused by the presence of inflection points in velocity profiles. The basic state is assumed to be time dependent, which reflects the role of internal waves in controlling fine‐scale shear. Linear stability analysis suggests that conditions for thermohaline‐shear instability are met in most ocean regions where temperature and salinity concurrently increase downward. We conclude that thermohaline‐shear instability represents a plausible mechanism for the initiation of active diffusive convection, which, in turn, is essential for the formation of thermohaline staircases and maintenance of double‐diffusive interleaving. 
    more » « less
  4. Abstract The diffusive layering (DL) form of double-diffusive convection cools the Atlantic Water (AW) as it circulates around the Arctic Ocean. Large DL steps, with heights of homogeneous layers often greater than 10 m, have been found above the AW core in the Eurasian Basin (EB) of the eastern Arctic. Within these DL staircases, heat and salt fluxes are determined by the mechanisms for vertical transport through the high-gradient regions (HGRs) between the homogeneous layers. These HGRs can be thick (up to 5 m and more) and are frequently complex, being composed of multiple small steps or continuous stratification. Microstructure data collected in the EB in 2007 and 2008 are used to estimate heat fluxes through large steps in three ways: using the measured dissipation rate in the large homogeneous layers; utilizing empirical flux laws based on the density ratio and temperature step across HGRs after scaling to account for the presence of multiple small DL interfaces within each HGR; and averaging estimates of heat fluxes computed separately for individual small interfaces (as laminar conductive fluxes), small convective layers (via dissipation rates within small DL layers), and turbulent patches (using dissipation rate and buoyancy) within each HGR. Diapycnal heat fluxes through HGRs evaluated by each method agree with each other and range from ~2 to ~8 W m−2, with an average flux of ~3–4 W m−2. These large fluxes confirm a critical role for the DL instability in cooling and thickening the AW layer as it circulates around the eastern Arctic Ocean. 
    more » « less
  5. null (Ed.)
    This study attempts to quantify and explain the systematic weakening of internal gravity waves in fingering and diffusive thermohaline staircases. The interaction between waves and staircases is explored using a combination of direct numerical simulations (DNS) and an asymptotic multiscale model. The multiscale theory makes it possible to express the wave decay rate $$({\lambda _d})$$ as a function of its wavenumbers and staircase parameters. We find that the decay rates in fully developed staircases greatly exceed values that can be directly attributed to molecular dissipation. They rapidly increase with increasing wavenumbers, both vertical and horizontal. At the same time, $${\lambda _d}$$ is only weakly dependent on the thickness of layers in the staircase, the overall density ratio and the diffusivity ratio. The proposed physical mechanism of attenuation emphasizes the significance of eddy diffusion of temperature and salinity, whereas eddy viscosity plays a secondary role in damping internal waves. The asymptotic model is successfully validated by the DNS performed in numerically accessible regimes. We also discuss potential implications of staircase-induced suppression for diapycnal mixing by overturning internal waves in the ocean. 
    more » « less