skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnetized Fingering Convection in Stars
Abstract Fingering convection (also known as thermohaline convection) is a process that drives the vertical transport of chemical elements in regions of stellar radiative zones where the mean molecular weight increases with radius. Recently, Harrington & Garaud used three-dimensional direct numerical simulations (DNS) to show that a vertical magnetic field can dramatically enhance the rate of chemical mixing by fingering convection. Furthermore, they proposed a so-called “parasitic saturation” theory to model this process. Here, we test their model over a broad range of parameter space, using a suite of DNS of magnetized fingering convection, varying the magnetic Prandtl number, magnetic field strength, and composition gradient. We find that the rate of chemical mixing measured in the simulations is not always predicted accurately by their existing model, in particular when the magnetic diffusivity is large. We then present an extension of the Harrington & Garaud model which resolves this issue. When applied to stellar parameters, it recovers the results of Harrington & Garaud except in the limit where fingering convection becomes marginally stable, where the new model is preferred. We discuss the implications of our findings for stellar structure and evolution.  more » « less
Award ID(s):
1908338
PAR ID:
10498590
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
964
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 184
Size(s):
Article No. 184
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study attempts to quantify and explain the systematic weakening of internal gravity waves in fingering and diffusive thermohaline staircases. The interaction between waves and staircases is explored using a combination of direct numerical simulations (DNS) and an asymptotic multiscale model. The multiscale theory makes it possible to express the wave decay rate $$({\lambda _d})$$ as a function of its wavenumbers and staircase parameters. We find that the decay rates in fully developed staircases greatly exceed values that can be directly attributed to molecular dissipation. They rapidly increase with increasing wavenumbers, both vertical and horizontal. At the same time, $${\lambda _d}$$ is only weakly dependent on the thickness of layers in the staircase, the overall density ratio and the diffusivity ratio. The proposed physical mechanism of attenuation emphasizes the significance of eddy diffusion of temperature and salinity, whereas eddy viscosity plays a secondary role in damping internal waves. The asymptotic model is successfully validated by the DNS performed in numerically accessible regimes. We also discuss potential implications of staircase-induced suppression for diapycnal mixing by overturning internal waves in the ocean. 
    more » « less
  2. The competition between turbulent convection and global rotation in planetary and stellar interiors governs the transport of heat and tracers, as well as magnetic field generation. These objects operate in dynamical regimes ranging from weakly rotating convection to the “geostrophic turbulence” regime of rapidly rotating convection. However, the latter regime has remained elusive in the laboratory, despite a worldwide effort to design ever-taller rotating convection cells over the last decade. Building on a recent experimental approach where convection is driven radiatively, we report heat transport measurements in quantitative agreement with this scaling regime, the experimental scaling law being validated against direct numerical simulations (DNS) of the idealized setup. The scaling exponent from both experiments and DNS agrees well with the geostrophic turbulence prediction. The prefactor of the scaling law is greater than the one diagnosed in previous idealized numerical studies, pointing to an unexpected sensitivity of the heat transport efficiency to the precise distribution of heat sources and sinks, which greatly varies from planets to stars. 
    more » « less
  3. null (Ed.)
    A theoretical model is developed which illustrates the dynamics of layering instability, frequently realized in ocean regions with active fingering convection. Thermohaline layering is driven by the interplay between large-scale stratification and primary double-diffusive instabilities operating at the microscale – temporal and spatial scales set by molecular dissipation. This interaction is described by a combination of direct numerical simulations and an asymptotic multiscale model. The multiscale theory is used to formulate explicit and dynamically consistent flux laws, which can be readily implemented in large-scale analytical and numerical models. Most previous theoretical investigations of thermohaline layering were based on the flux-gradient model, which assumes that the vertical transport of density components is uniquely determined by their local background gradients. The key deficiency of this approach is that layering instabilities predicted by the flux-gradient model have unbounded growth rates at high wavenumbers. The resulting ultraviolet catastrophe precludes the analysis of such basic properties of layering instability as its preferred wavelength or the maximal growth rate. The multiscale model, on the other hand, incorporates hyperdiffusion terms that stabilize short layering modes. Overall, the presented theory carries the triple advantage of (i) offering an explicit description of the interaction between microstructure and layering modes, (ii) taking into account the influence of non-uniform stratification on microstructure-driven mixing, and (iii) avoiding unphysical behaviour of the flux-gradient laws at small scales. While the multiscale approach to the parametrization of time-dependent small-scale processes is illustrated here on the example of fingering convection, we expect the proposed technique to be readily adaptable to a wide range of applications. 
    more » « less
  4. The traditional approach of using the Monin–Obukhov similarity theory (MOST) to model near-surface processes in large-eddy simulations (LESs) can lead to significant errors in natural convection. In this study, we propose an alternative approach based on feedforward neural networks (FNNs) trained on output from direct numerical simulation (DNS). To evaluate the performance, we conduct both a priori and a posteriori tests. In the a priori (offline) tests, we compare the statistics of the surface shear stress and heat flux, computed from filtered DNS input variables, to the stress and flux obtained from the filtered DNS. Additionally, we investigate the importance of various input features using the Shapley additive explanations value and the conditional average of the filter grid cells. In the a posteriori (online) tests, we implement the trained models in the System for Atmospheric Modeling (SAM) LES and compare the LES-generated surface shear stress and heat flux with those in the DNS. Our findings reveal that vertical velocity, a traditionally overlooked flow quantity, is one of the most important input features for determining the wall fluxes. Increasing the number of input features improves the a priori test results but does not always improve the model performance in the a posteriori tests because of the differences in input variables between the LES and DNS. Last, we show that physics-aware FNN models trained with logarithmic and scaled parameters can well extrapolate to more intense convection scenarios than in the training dataset, whereas those trained with primitive flow quantities cannot. Significance StatementThe traditional near-surface turbulence model, based on a shear-dominated boundary layer flow, does not represent near-surface turbulence in natural convection. Using a feedforward neural network (FNN), we can construct a more accurate model that better represents the near-surface turbulence in various flows and reveals previously overlooked controlling factors and process interactions. Our study shows that the FNN-generated models outperform the traditional model and highlight the importance of the near-surface vertical velocity. Furthermore, the physics-aware FNN models exhibit the potential to extrapolate to convective flows of various intensities beyond the range of the training dataset, suggesting their broader applicability for more accurate modeling of near-surface turbulence. 
    more » « less
  5. null (Ed.)
    Context. A realistic parametrization of convection and convective boundary mixing in conventional stellar evolution codes is still the subject of ongoing research. To improve the current situation, multidimensional hydrodynamic simulations are used to study convection in stellar interiors. Such simulations are numerically challenging, especially for flows at low Mach numbers which are typical for convection during early evolutionary stages. Aims. We explore the benefits of using a low-Mach hydrodynamic flux solver and demonstrate its usability for simulations in the astrophysical context. Simulations of convection for a realistic stellar profile are analyzed regarding the properties of convective boundary mixing. Methods. The time-implicit Seven-League Hydro (SLH) code was used to perform multidimensional simulations of convective helium shell burning based on a 25  M ⊙ star model. The results obtained with the low-Mach AUSM + -up solver were compared to results when using its non low-Mach variant AUSM B + -up. We applied well-balancing of the gravitational source term to maintain the initial hydrostatic background stratification. The computational grids have resolutions ranging from 180 × 90 2 to 810 × 540 2 cells and the nuclear energy release was boosted by factors of 3 × 10 3 , 1 × 10 4 , and 3 × 10 4 to study the dependence of the results on these parameters. Results. The boosted energy input results in convection at Mach numbers in the range of 10 −3 –10 −2 . Standard mixing-length theory predicts convective velocities of about 1.6 × 10 −4 if no boosting is applied. The simulations with AUSM + -up show a Kolmogorov-like inertial range in the kinetic energy spectrum that extends further toward smaller scales compared with its non low-Mach variant. The kinetic energy dissipation of the AUSM + -up solver already converges at a lower resolution compared to AUSM B + -up. The extracted entrainment rates at the boundaries of the convection zone are well represented by the bulk Richardson entrainment law and the corresponding fitting parameters are in agreement with published results for carbon shell burning. However, our study needs to be validated by simulations at higher resolution. Further, we find that a general increase in the entropy in the convection zone may significantly contribute to the measured entrainment of the top boundary. Conclusion. This study demonstrates the successful application of the AUSM + -up solver to a realistic astrophysical setup. Compressible simulations of convection in early phases at nominal stellar luminosity will benefit from its low-Mach capabilities. Similar to other studies, our extrapolated entrainment rate for the helium-burning shell would lead to an unrealistic growth of the convection zone if it is applied over the lifetime of the zone. Studies at nominal stellar luminosities and different phases of the same convection zone are needed to detect a possible evolution of the entrainment rate and the impact of radiation on convective boundary mixing. 
    more » « less