- Award ID(s):
- 1832042
- Publication Date:
- NSF-PAR ID:
- 10301769
- Journal Name:
- Basic and Applied Ecology
- Volume:
- 56
- Issue:
- C
- Page Range or eLocation-ID:
- 259 to 269
- ISSN:
- 1439-1791
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Convergent evolution is at the forefront of many form-function studies. There are many examples of multiple independent lineages evolving a similar morphology in response to similar functional demands, providing a framework for testing hypotheses of form-function evolution. However, there are numerous clades with underappreciated convergence, in which there is a perceived homogeneity in morphology. In these groups, it can be difficult to investigate causal relationships of form and function (e.g., diet influencing the evolution of jaw morphology) without the ability to disentangle phylogenetic signal from convergence. Leuciscids (Cypriniformes: Leuciscidae; formerly nested within Cyprinidae) are a species-rich clade of fishes that have diversified to occupy nearly every freshwater trophic niche, yet are considered to have relatively low morphological diversity relative to other large freshwater clades. Within the North American leuciscids, many genera contain at least one herbivore, insectivore, and larvaphage. We created 3D models from micro-computed tomography scans of 165 leuciscid species to measure functionally relevant traits within the pharyngeal jaws of these fishes. Using a published phylogeny, we tested these metrics for evolutionary integration, phylogenetic signal, and correlation with diet. Measurements of the pharyngeal jaws, muscle attachment areas, and teeth showed strong positive evolutionary correlation with each other andmore »
-
Abstract Dental microwear texture analysis (DMTA) is commonly used to assess the dietary ecology of modern and fossil taxa. In carnivorans, teeth with different functions record dietary behavior differently. Here, we assess DMTA variability along the tooth row of an extant carnivorous marsupial—the Tasmanian devil, Sarcophilus harrisii—which has multiple carnassial-like molars that may function and record diet similarly. We compared the complexity (Asfc), anisotropy (epLsar), and textural fill volume (Tfv) of the lower second, third, and fourth molars of Tasmanian devils to test the hypothesis that teeth with similar forms yield similar functions. Although third molars do have significantly higher epLsar values than fourth molars, all other DMTA attributes are indistinguishable from one another. These data suggest that teeth with comparable morphologies in the same taxon have similar functions and largely record diet similarly. In addition, we compared fossil and modern specimens of S. harrisii from Tasmania to assess dietary behavior over time. These analyses indicate that foods with similar textures have been consumed since the late Quaternary.