skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-Similar Surfaces: Involutions and Perfection
We investigate the problem of when big mapping class groups are generated by involutions. Restricting our attention to the class of self-similar surfaces, which are surfaces with self-similar ends spaces, as defined by Mann and Rafi, and with 0 or infinite genus, we show that when the set of maximal ends is infinite, then the mapping class groups of these surfaces are generated by involutions, normally generated by a single involution, and uniformly perfect. In fact, we derive this statement as a corollary of the corresponding statement for the homeomorphism groups of these surfaces. On the other hand, among self-similar surfaces with one maximal end, we produce infinitely many examples in which their big mapping class groups are neither perfect nor generated by torsion elements. These groups also do not have the automatic continuity property.  more » « less
Award ID(s):
1651963
PAR ID:
10534399
Author(s) / Creator(s):
;
Publisher / Repository:
Department of Mathematics, University of Michigan
Date Published:
Journal Name:
Michigan Mathematical Journal
Volume:
74
Issue:
3
ISSN:
0026-2285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We show that continuous epimorphisms between a class of subgroups of mapping class groups of orientable infinite-genus 2-manifolds with no planar ends are always induced by homeomorphisms. This class of subgroups includes the pure mapping class group, the closure of the compactly supported mapping classes, and the full mapping class group in the case that the underlying manifold has a finite number of ends or is perfectly self-similar. As a corollary, these groups are Hopfian topological groups. 
    more » « less
  2. We completely classify the orientable infinite-type surfaces S such that PMap(S), the pure mapping class group, has automatic continuity. This classification includes surfaces with noncompact boundary. In the case of surfaces with finitely many ends and no noncompact boundary components, we prove the mapping class group Map(S) does not have automatic continuity. We also completely classify the surfaces such that PMapc (S), the subgroup of the pure mapping class group composed of elements with representatives that can be approximated by compactly supported homeomorphisms, has automatic continuity. In some cases when PMapc (S) has automatic continuity, we show any homomorphism from PMapc (S) to a countable group is trivial. 
    more » « less
  3. Abstract For every$$n\ge 2$$ n 2 , thesurface Houghton group$${\mathcal {B}}_n$$ B n is defined as the asymptotically rigid mapping class group of a surface with exactlynends, all of them non-planar. The groups$${\mathcal {B}}_n$$ B n are analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some$${\mathcal {B}}_n$$ B n . As countable mapping class groups of infinite type surfaces, the groups$$\mathcal {B}_n$$ B n lie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that$$\mathcal {B}_n$$ B n is of type$$\text {F}_{n-1}$$ F n - 1 , but not of type$$\text {FP}_{n}$$ FP n , analogous to the braided Houghton groups. 
    more » « less
  4. In this note we make progress toward a conjecture of Durham–Fanoni–Vlamis, showing that every infinite-type surface with fi­ni­te-invariance index \(1\) and no nondisplaceable compact subsurfaces fails to have a good graph of curves, that is, a connected graph where vertices represent homotopy classes of essential simple closed curves and with a natural mapping class group action having infinite diameter orbits. Our arguments use tools developed by Mann–Rafi in their study of the coarse geometry of big mapping class groups. 
    more » « less
  5. In [M. De Renzi, A. Gainutdinov, N. Geer, B. Patureau-Mirand and I. Runkel, 3-dimensional TQFTs from non-semisimple modular categories, preprint (2019), arXiv:1912.02063[math.GT]], we constructed 3-dimensional topological quantum field theories (TQFTs) using not necessarily semisimple modular categories. Here, we study projective representations of mapping class groups of surfaces defined by these TQFTs, and we express the action of a set of generators through the algebraic data of the underlying modular category [Formula: see text]. This allows us to prove that the projective representations induced from the non-semisimple TQFTs of the above reference are equivalent to those obtained by Lyubashenko via generators and relations in [V. Lyubashenko, Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172(3) (1995) 467–516, arXiv:hep-th/9405167]. Finally, we show that, when [Formula: see text] is the category of finite-dimensional representations of the small quantum group of [Formula: see text], the action of all Dehn twists for surfaces without marked points has infinite order. 
    more » « less