skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: STULL: Unbiased Online Sampling for Visual Exploration of Large Spatiotemporal Data
Online sampling-supported visual analytics is increasingly important, as it allows users to explore large datasets with acceptable approximate answers at interactive rates. However, existing online spatiotemporal sampling techniques are often biased, as most researchers have primarily focused on reducing computational latency. Biased sampling approaches select data with unequal probabilities and produce results that do not match the exact data distribution, leading end users to incorrect interpretations. In this paper, we propose a novel approach to perform unbiased online sampling of large spatiotemporal data. The proposed approach ensures the same probability of selection to every point that qualifies the specifications of a user's multidimensional query. To achieve unbiased sampling for accurate representative interactive visualizations, we design a novel data index and an associated sample retrieval plan. Our proposed sampling approach is suitable for a wide variety of visual analytics tasks, e.g., tasks that run aggregate queries of spatiotemporal data. Extensive experiments confirm the superiority of our approach over a state-of-the-art spatial online sampling technique, demonstrating that within the same computational time, data samples generated in our approach are at least 50% more accurate in representing the actual spatial distribution of the data and enable approximate visualizations to present closer visual appearances to the exact ones.  more » « less
Award ID(s):
1815796 1910216
PAR ID:
10301810
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE Conference on Visual Analytics Science and Technology (VAST)
Page Range / eLocation ID:
72 to 83
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Visual analytics systems enable highly interactive exploratory data analysis. Across a range of fields, these technologies have been successfully employed to help users learn from complex data. However, these same exploratory visualization techniques make it easy for users to discover spurious findings. This paper proposes new methods to monitor a user’s analytic focus during visual analysis of structured datasets and use it to surface relevant articles that contextualize the visualized findings. Motivated by interactive analyses of electronic health data, this paper introduces a formal model of analytic focus, a computational approach to dynamically update the focus model at the time of user interaction, and a prototype application that leverages this model to surface relevant medical publications to users during visual analysis of a large corpus of medical records. Evaluation results with 24 users show that the modeling approach has high levels of accuracy and is able to surface highly relevant medical abstracts. 
    more » « less
  2. As precipitation analysis reveals critical statistical characteristics, temporal patterns, and spatial distributions of rainfall and snowfall events, it plays an important role in planning urban drainage systems, flood forecasting, hydrological modeling, and climate studies. It helps engineers design climate-resilient infrastructure capable of withstanding extreme weather events, which is becoming increasingly important as precipitation patterns change over time. With precipitation analysis, multiple valuable information can be determined, such as storm intensity, duration, and frequency. To enhance understanding of precipitation data and analysis results, researchers often use graphical representation methods to show the data in visual formats. Although existing precipitation analysis and basic visual representations are helpful, it is critical to have a comprehensive analysis and visualization system to detect significant patterns and anomalies in high-resolution temporal precipitation data more effectively. This study presents a visual analytics system enabling interactive analysis of hourly precipitation data across all U.S. states. Multiple coordinated visualizations are designed to support both single and multiple-station analysis. These visualizations allow users to examine temporal patterns, spatial distributions, and statistical characteristics of precipitation events directly within visualizations. Case studies demonstrate the usefulness of the designed system by evaluating various historical storm events. 
    more » « less
  3. Interaction is the cornerstone of how people perform tasks and gain insight in visual analytics. However, people’s inherent cognitive biases impact their behavior and decision making during their interactive visual analytic process. Understanding how bias impacts the visual analytic process, how it can be measured, and how its negative effects can be mitigated is a complex problem space. Nonetheless, recent work has begun to approach this problem by proposing theoretical computational metrics that are applied to user interaction sequences to measure bias in real-time. In this paper, we implement and apply these computational metrics in the context of anchoring bias. We present the results of a formative study examining how the metrics can capture anchoring bias in real-time during a visual analytic task. We present lessons learned in the form of considerations for applying the metrics in a visual analytic tool. Our findings suggest that these computational metrics are a promising approach for characterizing bias in users’ interactive behaviors. 
    more » « less
  4. Mobile Augmented Reality (AR) offers a powerful way to provide spatially-aware guidance for real-world applications. In many cases, these applications involve the configuration of a camera or articulated subject, asking users to navigate several spatial degrees of freedom (DOF) at once. Most guidance for such tasks relies on decomposing available DOF into subspaces that can be more easily mapped to simple 1D or 2D visualizations. Unfortunately, different factorizations of the same motion often map to very different visual feedback, and finding the factorization that best matches a user’s intuition can be difficult. We propose an interactive approach that infers rotational degrees of freedom from short user demonstrations. Users select one or two DOFs at a time by demonstrating a small range of motion, which we use to learn a rotational frame that best aligns with user control of the object. We show that deriving visual feedback from this inferred learned rotational frame leads to improved task completion times on 6DOF guidance tasks compared to standard default reference frames used in most mixed reality applications. 
    more » « less
  5. null (Ed.)
    Most visual analytics systems assume that all foraging for data happens before the analytics process; once analysis begins, the set of data attributes considered is fixed. Such separation of data construction from analysis precludes iteration that can enable foraging informed by the needs that arise in-situ during the analysis. The separation of the foraging loop from the data analysis tasks can limit the pace and scope of analysis. In this paper, we present CAVA, a system that integrates data curation and data augmentation with the traditional data exploration and analysis tasks, enabling information foraging in-situ during analysis. Identifying attributes to add to the dataset is difficult because it requires human knowledge to determine which available attributes will be helpful for the ensuing analytical tasks. CAVA crawls knowledge graphs to provide users with a a broad set of attributes drawn from external data to choose from. Users can then specify complex operations on knowledge graphs to construct additional attributes. CAVA shows how visual analytics can help users forage for attributes by letting users visually explore the set of available data, and by serving as an interface for query construction. It also provides visualizations of the knowledge graph itself to help users understand complex joins such as multi-hop aggregations. We assess the ability of our system to enable users to perform complex data combinations without programming in a user study over two datasets. We then demonstrate the generalizability of CAVA through two additional usage scenarios. The results of the evaluation confirm that CAVA is effective in helping the user perform data foraging that leads to improved analysis outcomes, and offer evidence in support of integrating data augmentation as a part of the visual analytics pipeline. 
    more » « less