Abstract In this work, a portable venturi tube capable of measuring bidirectional respiratory flow is developed and correlated the measurements to pulmonary function. Pressure signals are transduced using flexible and compressible capacitive foam sensors embedded into the wall of the device. In this configuration, the sensors are able to provide differential pressure readings, from which the airflow rate passing through the tube could be extrapolated. Utilizing the venturi effect, the geometry of the spirometer tube is designed through finite element analysis to measure respiratory airflow during inhalation and exhalation. The device tube is 3D‐printed and used to measure tidal breathing and deep breathing, along with peak expiratory flow rates, on a healthy individual. This spirometer design allows for easy‐to‐use point‐of‐care diagnoses and has the potential to improve the care of respiratory illnesses.
more »
« less
BreathTrack: Detecting Regular Breathing Phases from Unannotated Acoustic Data Captured by a Smartphone
Breathing biomarkers, such as breathing rate, fractional inspiratory time, and inhalation-exhalation ratio, are vital for monitoring the user's health and well-being. Accurate estimation of such biomarkers requires breathing phase detection, i.e., inhalation and exhalation. However, traditional breathing phase monitoring relies on uncomfortable equipment, e.g., chestbands. Smartphone acoustic sensors have shown promising results for passive breathing monitoring during sleep or guided breathing. However, detecting breathing phases using acoustic data can be challenging for various reasons. One of the major obstacles is the complexity of annotating breathing sounds due to inaudible parts in regular breathing and background noises. This paper assesses the potential of using smartphone acoustic sensors for passive unguided breathing phase monitoring in a natural environment. We address the annotation challenges by developing a novel variant of the teacher-student training method for transferring knowledge from an inertial sensor to an acoustic sensor, eliminating the need for manual breathing sound annotation by fusing signal processing with deep learning techniques. We train and evaluate our model on the breathing data collected from 131 subjects, including healthy individuals and respiratory patients. Experimental results show that our model can detect breathing phases with 77.33% accuracy using acoustic sensors. We further present an example use-case of breathing phase-detection by first estimating the biomarkers from the estimated breathing phases and then using these biomarkers for pulmonary patient detection. Using the detected breathing phases, we can estimate fractional inspiratory time with 92.08% accuracy, the inhalation-exhalation ratio with 86.76% accuracy, and the breathing rate with 91.74% accuracy. Moreover, we can distinguish respiratory patients from healthy individuals with up to 76% accuracy. This paper is the first to show the feasibility of detecting regular breathing phases towards passively monitoring respiratory health and well-being using acoustic data captured by a smartphone.
more »
« less
- Award ID(s):
- 1840131
- PAR ID:
- 10301951
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Breath ammonia is an essential biomarker for patients with many chronic illnesses, such as chronic kidney disease (CKD), chronic liver disease (CLD), urea cycle disorders (UCD), and hepatic encephalopathy. However, existing breath ammonia sensors fail to compensate for the impact of breath humidity and complex breathing motions associated with a human breath sample. Here, a multimodal breath sensing system is presented that integrates an ammonia sensor based on a thermally cleaved conjugated polymer, a humidity sensor based on reduced graphene oxide (rGO), and a breath dynamics sensor based on a 3D folded strain‐responsive mesostructure. The miniaturized construction and module‐based configuration offer flexible integration with a broad range of masks. Experimental results present the capabilities of the system in continuously detecting diagnostic ranges of breath ammonia under real, humid breath conditions with sufficient sensing accuracy and selectivity over 3 weeks. A machine‐learning algorithm based on K‐means clustering decodes multimodal signals collected from the breath sensor to differentiate between healthy and diseased breath concentrations of ammonia. The on‐body test highlights the operational simplicity and practicality of the system for noninvasively tracing ammonia biomarkers.more » « less
-
Abstract Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Current COPD diagnosis (i.e., spirometry) could be unreliable because the test depends on an adequate effort from the tester and testee. Moreover, the early diagnosis of COPD is challenging. The authors address COPD detection by constructing two novel physiological signals datasets (4432 records from 54 patients in the WestRo COPD dataset and 13824 medical records from 534 patients in the WestRo Porti COPD dataset). The authors demonstrate their complex coupled fractal dynamical characteristics and perform a fractional‐order dynamics deep learning analysis to diagnose COPD. The authors found that the fractional‐order dynamical modeling can extract distinguishing signatures from the physiological signals across patients with all COPD stages—from stage 0 (healthy) to stage 4 (very severe). They use the fractional signatures to develop and train a deep neural network that predicts COPD stages based on the input features (such as thorax breathing effort, respiratory rate, or oxygen saturation). The authors show that the fractional dynamic deep learning model (FDDLM) achieves a COPD prediction accuracy of 98.66% and can serve as a robust alternative to spirometry. The FDDLM also has high accuracy when validated on a dataset with different physiological signals.more » « less
-
Currently, wired respiratory rate sensors tether patients to a location and can potentially obscure their body from medical staff. In addition, current wired respiratory rate sensors are either inaccurate or invasive. Spurred by these deficiencies, we have developed the Bellyband, a less invasive smart garment sensor, which uses wireless, passive Radio Frequency Identification (RFID) to detect bio-signals. Though the Bellyband solves many physical problems, it creates a signal processing challenge, due to its noisy, quantized signal. Here, we present an algorithm by which to estimate respiratory rate from the Bellyband. The algorithm uses an adaptively parameterized Savitzky-Golay (SG) filter to smooth the signal. The adaptive parameterization enables the algorithm to be effective on a wide range of respiratory frequencies, even when the frequencies change sharply. Further, the algorithm is three times faster and three times more accurate than the current Bellyband respiratory rate detection algorithm and is able to run in real time. Using an off-the-shelf respiratory monitor and metronome-synchronized breathing, we gathered 25 sets of data and tested the algorithm against these trials. The algorithm’s respiratory rate estimates diverged from ground truth by an average Root Mean Square Error (RMSE) of 4.1 breaths per minute (BPM) over all 25 trials. Further, preliminary results suggest that the algorithm could be made as or more accurate than widely used algorithms that detect the respiratory rate of non-ventilated patients using data from an Electrocardiogram (ECG) or Impedance Plethysmography (IP).more » « less
-
Doppler radar remote sensing of torso kinematics can provide an indirect measure of cardiopulmonary function. Motion at the human body surface due to heart and lung activity has been successfully used to characterize such measures as respiratory rate and depth, obstructive sleep apnea, and even the identity of an individual subject. For a sedentary subject, Doppler radar can track the periodic motion of the portion of the body moving as a result of the respiratory cycle as distinct from other extraneous motions that may occur, to provide a spatial temporal displacement pattern that can be combined with a mathematical model to indirectly assess quantities such as tidal volume, and paradoxical breathing. Furthermore, it has been demonstrated that even healthy respiratory function results in distinct motion patterns between individuals that vary as a function of relative time and depth measures over the body surface during the inhalation/exhalation cycle. Potentially, the biomechanics that results in different measurements between individuals can be further exploited to recognize pathology related to lung ventilation heterogeneity and other respiratory diagnostics.more » « less
An official website of the United States government

