Abstract Accurate precipitation estimates are critical to simulating seasonal snowpack evolution. We conduct and evaluate high‐resolution (4‐km) snowpack simulations over the western United States (WUS) mountains in Water Year 2013 using the Noah with multi‐parameterization (Noah‐MP) land surface model driven by precipitation forcing from convection‐permitting (4‐km) Weather Research and Forecasting (WRF) modeling and four widely used high‐resolution datasets that are derived from statistical interpolation based on in situ measurements. Substantial differences in the precipitation amount among these five datasets, particularly over the western and northern portions of WUS mountains, significantly affect simulated snow water equivalent (SWE) and snow depth (SD) but have relatively limited effects on snow cover fraction (SCF) and surface albedo. WRF generally captures observed precipitation patterns and results in an overall best‐performed SWE and SD in the western and northern portions of WUS mountains, where the statistically interpolated datasets lead to underpredicted precipitation, SWE, and SD. Over the interior WUS mountains, all the datasets consistently underestimate precipitation, causing significant negative biases in SWE and SD, among which the results driven by the WRF precipitation show an average performance. Further analysis reveals systematic positive biases in SCF and surface albedo across the WUS mountains, with similar bias patterns and magnitudes for simulations driven by different precipitation datasets, suggesting an urgent need to improve the Noah‐MP snowpack physics. This study highlights that convection‐permitting modeling with proper configurations can have added values in providing decent precipitation for high‐resolution snowpack simulations over the WUS mountains in a typical ENSO‐neutral year, particularly over observation‐scarce regions. 
                        more » 
                        « less   
                    
                            
                            In Situ Determination of Dry and Wet Snow Permittivity: Improving Equations for Low Frequency Radar Applications
                        
                    
    
            Extensive efforts have been made to observe the accumulation and melting of seasonal snow. However, making accurate observations of snow water equivalent (SWE) at global scales is challenging. Active radar systems show promise, provided the dielectric properties of the snowpack are accurately constrained. The dielectric constant (k) determines the velocity of a radar wave through snow, which is a critical component of time-of-flight radar techniques such as ground penetrating radar and interferometric synthetic aperture radar (InSAR). However, equations used to estimate k have been validated only for specific conditions with limited in situ validation for seasonal snow applications. The goal of this work was to further understand the dielectric permittivity of seasonal snow under both dry and wet conditions. We utilized extensive direct field observations of k, along with corresponding snow density and liquid water content (LWC) measurements. Data were collected in the Jemez Mountains, NM; Sandia Mountains, NM; Grand Mesa, CO; and Cameron Pass, CO from February 2020 to May 2021. We present empirical relationships based on 146 snow pits for dry snow conditions and 92 independent LWC observations in naturally melting snowpacks. Regression results had r2 values of 0.57 and 0.37 for dry and wet snow conditions, respectively. Our results in dry snow showed large differences between our in situ observations and commonly applied equations. We attribute these differences to assumptions in the shape of the snow grains that may not hold true for seasonal snow applications. Different assumptions, and thus different equations, may be necessary for varying snowpack conditions in different climates, suggesting that further testing is necessary. When considering wet snow, large differences were found between commonly applied equations and our in situ measurements. Many previous equations assume a background (dry snow) k that we found to be inaccurate, as previously stated, and is the primary driver of resulting uncertainty. Our results suggest large errors in SWE (10–15%) or LWC (0.05–0.07 volumetric LWC) estimates based on current equations. The work presented here could prove useful for making accurate observations of changes in SWE using future InSAR opportunities such as NISAR and ROSE-L. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10302169
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 13
- Issue:
- 22
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 4617
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. Seasonal snowpack is an essential component in the hydrological cycle and plays a significant role in supplying water resources to downstream users. Yet the snow water equivalent (SWE) in seasonal snowpacks, and its space–time variation, remains highly uncertain, especially over mountainous areas with complex terrain and sparse observations, such as in High Mountain Asia (HMA). In this work, we assessed the spatiotemporal distribution of seasonal SWE, obtained from a new 18-year HMA Snow Reanalysis (HMASR) dataset, as part of the recent NASA High Mountain Asia Team (HiMAT) effort. A Bayesian snow reanalysis scheme previously developed to assimilate satellite-derived fractional snow-covered area (fSCA) products from Landsat and MODIS platforms has been applied to develop the HMASR dataset (at a spatial resolution of 16 arcsec (∼500 m) and daily temporal resolution) over the joint Landsat–MODIS period covering water years (WYs) 2000–2017. Based on the results, the HMA-wide total SWE volume is found to be around163 km3 on average and ranges from 114 km3 (WY2001) to 227 km3 (WY2005) when assessed over 18 WYs. The most abundant snowpacks are found in the northwestern basins (e.g., Indus, Syr Darya and Amu Darya) that are mainly affected by the westerlies, accounting for around 66 % of total seasonal SWE volume. Seasonal snowpack in HMA is depicted by snow accumulating through October to March and April, typically peaking around April and depleting in July–October, with variations across basins and WYs. When examining the elevational distribution over the HMA domain, seasonal SWE volume peaks at mid-elevations (around 3500 m), with over 50 % of the volume stored above 3500 m. Above-average amounts of precipitation causes significant overall increase in SWE volumes across all elevations, while an increase in air temperature (∼1.5 K) from cooler to normal conditions leads to an redistribution in snow storage from lower elevations to mid-elevations. This work brings new insight into understanding the climatology and variability of seasonal snowpack over HMA, with the regional snow reanalysis constrained by remote-sensing data, providing a new reference dataset for future studies of seasonal snow and how it contributes to the water cycle and climate over the HMA region.more » « less
- 
            Abstract. It is well understood that the distribution and quantity of liquid water in snow is relevant for snow hydrology and avalanche forecasting, yet detecting and quantifying liquid water in snow remains a challenge from themicro- to the macro-scale. Using near-infrared (NIR) spectral reflectancemeasurements, previous case studies have demonstrated the capability toretrieve surface liquid water content (LWC) of wet snow by leveraging shifts in the complex refractive index between ice and water. However, different models to represent mixed-phase optical properties have been proposed, including (1) internally mixed ice and water spheres, (2) internally mixed water-coated ice spheres, and (3) externally mixed interstitial ice and water spheres. Here, from within a controlled laboratory environment, we determined the optimal mixed-phase optical property model for simulating wet snow reflectance using a combination of NIR hyperspectral imaging, radiative transfer simulations (Discrete Ordinate Radiative Transfer model, DISORT), and an independent dielectric LWC measurement (SLF Snow Sensor). Maps of LWC were produced by finding the lowest residual between measured reflectance and simulated reflectance in spectral libraries, generated for each model with varying LWC and grain size, and assessed against the in situ LWC sensor. Our results show that the externally mixed model performed the best, retrieving LWC with an uncertainty of ∼1 %, while the simultaneously retrieved grain size better represented wet snow relative to the established scaled band area method. Furthermore, the LWC retrieval method was demonstrated in the field by imaging a snowpit sidewall during melt conditions and mapping LWC distribution in unprecedented detail, allowing for visualization of pooling water and flow features.more » « less
- 
            Abstract Uncertainty attribution in water supply forecasting is crucial to improve forecast skill and increase confidence in seasonal water management planning. We develop a framework to quantify fractional forecast uncertainty and partition it between (1) snowpack quantification methods, (2) variability in post‐forecast precipitation, and (3) runoff model errors. We demonstrate the uncertainty framework with statistical runoff models in the upper Tuolumne and Merced River basins (California, USA) using snow observations at two endmember spatial resolutions: a simple snow pillow index and full‐catchment snow water equivalent (SWE) maps at 50 m resolution from the Airborne Snow Observatories. Bayesian forecast simulations demonstrate a nonlinear decrease in the skill of statistical water supply forecasts during warm snow droughts, when a low fraction of winter precipitation remains as SWE. Forecast skill similarly decreases during dry snow droughts, when winter precipitation is low. During a shift away from snow‐dominance, the uncertainty of forecasts using snow pillow data increases about 1.9 times faster than analogous forecasts using full‐catchment SWE maps in the study area. Replacing the snow pillow index with full‐catchment SWE data reduces statistical forecast uncertainty by 39% on average across all tested climate conditions. Attributing water supply forecast uncertainty to reducible error sources reveals opportunities to improve forecast reliability in a warmer future climate.more » « less
- 
            null (Ed.)Precipitation occurs in two basic forms defined as liquid state and solid state. Different from rain-fed watershed, modeling snow processes is of vital importance in snow-dominated watersheds. The seasonal snowpack is a natural water reservoir, which stores snow water in winter and releases it in spring and summer. The warmer climate in recent decades has led to earlier snowmelt, a decline in snowpack, and change in the seasonality of river flows. The Soil and Water Assessment Tool (SWAT) could be applied in the snow-influenced watershed because of its ability to simultaneously predict the streamflow generated from rainfall and from the melting of snow. The choice of parameters, reference data, and calibration strategy could significantly affect the SWAT model calibration outcome and further affect the prediction accuracy. In this study, SWAT models are implemented in four upland watersheds in the Tulare Lake Basin (TLB) located across the Southern Sierra Nevada Mountains. Three calibration scenarios considering different calibration parameters and reference datasets are applied to investigate the impact of the Parallel Energy Balance Model (ParBal) snow reconstruction data and snow parameters on the streamflow and snow water-equivalent (SWE) prediction accuracy. In addition, the watershed parameters and lapse rate parameters-led equifinality is also evaluated. The results indicate that calibration of the SWAT model with respect to both streamflow and SWE reference data could improve the model SWE prediction reliability in general. Comparatively, the streamflow predictions are not significantly affected by differently lumped calibration schemes. The default snow parameter values capture the extreme high flows better than the other two calibration scenarios, whereas there is no remarkable difference among the three calibration schemes for capturing the extreme low flows. The watershed and lapse rate parameters-induced equifinality affects the flow prediction more (Nash-Sutcliffe Efficiency (NSE) varies between 0.2–0.3) than the SWE prediction (NSE varies less than 0.1). This study points out the remote-sensing-based SWE reconstruction product as a promising alternative choice for model calibration in ungauged snow-influenced watersheds. The streamflow-reconstructed SWE bi-objective calibrated model could improve the prediction reliability of surface water supply change for the downstream agricultural region under the changing climate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    