skip to main content

This content will become publicly available on October 1, 2023

Title: Surfactant proteins and innate immunity of otitis media
Otitis media (OM) is the most common disease among young children and one of the most frequent reasons to visit the pediatrician. Development of OM requires nasopharyngeal colonization by a pathogen which must gain access to the tympanic cavity through the eustachian tube (ET) along with being able to overcome the defense mechanisms of the immune system and middle ear mucosa. OM can be caused by viral or bacterial infection. The three main bacterial pathogens are Streptococcus pneumoniae, nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis. Innate immunity is important in OM resolution as the disease occurs in very young children before the development of specific immunity. Elements of innate immunity include natural barriers and pattern recognition receptors such as Toll like receptors (TLRs), and Nod like receptors (NLRs). Surfactant proteins A (SP-A) and D (SP-D) act as pattern recognition receptors and are found in the lung and many other tissues including the ET and the middle ear where they probably function in host defense. Surfactant has a potential for use in the treatment of OM due to surface tension lowering function in the ET, and the possible immune functions of SP-D and SP-A in the middle ear and ET.
Authors:
; ; ;
Award ID(s):
1722630
Publication Date:
NSF-PAR ID:
10388509
Journal Name:
Innate Immunity
Volume:
28
Issue:
7-8
Page Range or eLocation-ID:
213 to 223
ISSN:
1753-4259
Sponsoring Org:
National Science Foundation
More Like this
  1. Surfactant protein D (SP-D) is a C-type collectin and plays an important role in innate immunity and homeostasis in the lung. This study studied SP-D role in the nontypeable Haemophilus influenzae (NTHi)-induced otitis media (OM) mouse model. Wild-type C57BL/6 (WT) and SP-D knockout (KO) mice were used in this study. Mice were injected in the middle ear (ME) with 5 μL of NTHi bacterial solution (3.5 × 105 CFU/ear) or with the same volume of sterile saline (control). Mice were sacrificed at 3 time points, days 1, 3, and 7, after treatment. We found SP-D expression in the Eustachian tube (ET) and ME mucosa of WT mice but not in SP-D KO mice. After infection, SP-D KO mice showed more intense inflammatory changes evidenced by the increased mucosal thickness and inflammatory cell infiltration in the ME and ET compared to WT mice (p < 0.05). Increased bacterial colony-forming units and cytokine (IL-6 and IL-1β) levels in the ear washing fluid of infected SP-D KO mice were compared to infected WT mice. Molecular analysis revealed higher levels of NF-κB and NLRP3 activation in infected SP-D KO compared to WT mice (p < 0.05). In vitro studies demonstrated that SP-D significantly inducedmore »NTHi bacterial aggregation and enhanced bacterial phagocytosis by macrophages (p < 0.05). Furthermore, human ME epithelial cells showed a dose-dependent increased expression of NLRP3 and SP-D proteins after LPS treatment. We conclude that SP-D plays a critical role in innate immunity and disease resolution through enhancing host defense and regulating inflammatory NF-κB and NLRP3 activation in experimental OM mice.« less
  2. Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous (“self”) carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind (“non-self”) glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a newparadigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms,more »which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been “subverted” by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host’s immune responses.« less
  3. Plants rely on innate immune systems to defend against a wide variety of biotic attackers. Key components of innate immunity include cell-surface pattern-recognition receptors (PRRs), which recognize pest- and pathogen-associated molecular patterns (PAMPs). Unlike other classes of receptors that often have visible cell-death immune outputs upon activation, PRRs generally lack rapid methods for assessing function. Here, we describe a genetically encoded bioluminescent reporter of immune activation by heterologously expressed PRRs in the model organism Nicotiana benthamiana. We characterized N. benthamiana transcriptome changes in response to Agrobacterium tumefaciens and subsequent PAMP treatment to identify pattern-triggered immunity (PTI)-associated marker genes, which were then used to generate promoter-luciferase fusion fungal bioluminescence pathway (FBP) constructs. A reporter construct termed pFBP_2xNbLYS1::LUZ allows for robust detection of PTI activation by heterologously expressed PRRs. Consistent with known PTI signaling pathways, reporter activation by receptor-like protein (RLP) PRRs is dependent on the known adaptor of RLP PRRs, i.e., SOBIR1. The FBP reporter minimizes the amount of labor, reagents, and time needed to assay function of PRRs and displays robust sensitivity at biologically relevant PAMP concentrations, making it ideal for high throughput screens. The tools described in this paper will be powerful for investigations of PRR function and characterizationmore »of the structure-function of plant cell-surface receptors. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 “No Rights Reserved” license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.« less
  4. Reguera, Gemma (Ed.)
    ABSTRACT Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro ), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found asmore »hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.« less
  5. The interaction between host immunity and bacterial cells plays a pivotal role in a variety of human diseases. The bacterial cell wall component peptidoglycan (PG) is known to stimulate an immune response, which makes PG a distinctive recognition element for unveiling these complicated molecular interactions. Pattern recognition receptor (PRR) proteins are among the critical components of this system that initially recognize molecular patterns associated with microorganisms such as bacteria and fungi. These molecular patterns are mostly embedded in the bacterial or fungal cell wall structure and can be released and presented to the immune system in various situations. Nonetheless, detailed knowledge of this recognition is limited due to the diversity among the PG polymer and its fragments; the subsequent responses by multiple hosts add more complexity. Here, we discuss how our understanding of the role and molecular mechanisms of the well-studied PRR, the NOD-like receptors (NLRs), in the human immune system has evolved in recent years. We highlight the instances of other classes of proteins with similar behavior in the recognition of PG that have been identified in other microorganisms such as yeasts. These proteins are particularly interesting because a network of cellular interactions exists between human host cells, bacteriamore »and yeast as a part of the normal human flora. To support our understanding of these interactions, we provide insight into the chemist's toolbox of peptidoglycan probes that aid in the investigations of the behaviors of these proteins and other biological contexts relevant to the sensing and recognition of peptidoglycan. The importance of these interactions in human health for the development of biomarkers and biotherapy is highlighted.« less