skip to main content


Title: Recent warming reverses forty-year decline in catastrophic lake drainage and hastens gradual lake drainage across northern Alaska
Abstract

Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes draining year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

 
more » « less
Award ID(s):
1806213 1929170 1928048
NSF-PAR ID:
10302414
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
12
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 124019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62‐year period. Decadal‐scale lake drainage rates progressively declined from 2.0 lakes/yr (1955–1975), to 1.6 lakes/yr (1975–2000), and to 1.2 lakes/yr (2000–2017) in the ~30,000‐km2study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5‐m‐resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.

     
    more » « less
  2. Nearly 25% of all lakes on earth are located at high latitudes. These lakes are formed by a combination of thermokarst, glacial, and geological processes. Evidence suggests that the origin of periglacial lake formation may be an important factor controlling the likelihood of lakes to drain. However, geospatial data regarding the spatial distribution of these dominant Arctic and subarctic lakes are limited or do not exist. Here, we use lake-specific morphological properties using the Arctic Digital Elevation Model (DEM) and Landsat imagery to develop a Thermokarst lake Settlement Index (TSI), which was used in combination with available geospatial datasets of glacier history and yedoma permafrost extent to classify Arctic and subarctic lakes into Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes, respectively. This lake origin dataset was used to evaluate the influence of lake origin on drainage between 1985 and 2019 in northern Alaska. The lake origin map and lake drainage datasets were synthesized using five-year seamless Landsat ETM+ and OLI image composites. Nearly 35,000 lakes and their properties were characterized from Landsat mosaics using an object-based image analysis. Results indicate that the pattern of lake drainage varied by lake origin, and the proportion of lakes that completely drained (i.e., >60% area loss) between 1985 and 2019 in Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes were 12.1, 9.5, 8.7, and 0.0%, respectively. The lakes most vulnerable to draining were small thermokarst (non-yedoma) lakes (12.7%) and large yedoma lakes (12.5%), while the most resilient were large and medium-sized glacial lakes (4.9 and 4.1%) and Maar lakes (0.0%). This analysis provides a simple remote sensing approach to estimate the spatial distribution of dominant lake origins across variable physiography and surficial geology, useful for discriminating between vulnerable versus resilient Arctic and subarctic lakes that are likely to change in warmer and wetter climates. 
    more » « less
  3. Abstract

    Lakes are an important ecosystem component and geomorphological agent in northern high latitudes and it is important to understand how lake initiation, expansion and drainage may change as high latitudes continue to warm. In this study, we utilized Landsat Multispectral Scanner System images from the 1970s (1972, 1974, and 1975) and Operational Land Imager images from the 2010s (2013, 2014, and 2015) to assess broad-scale distribution and changes of lakes larger than 1 ha across the four permafrost zones (continuous, discontinuous, sporadic, and isolated extent) in western Alaska. Across our 68 000 km2study area, we saw a decline in overall lake coverage across all permafrost zones with the exception of the sporadic permafrost zone. In the continuous permafrost zone lake area declined by −6.7% (−65.3 km2), in the discontinuous permafrost zone by −1.6% (−55.0 km2), in the isolated permafrost zone by −6.9% (−31.5 km2) while lake cover increased by 2.7% (117.2 km2) in the sporadic permafrost zone. Overall, we observed a net drainage of lakes larger than 10 ha in the study region. Partial drainage of these medium to large lakes created an increase in the area covered by small water bodies <10 ha, in the form of remnant lakes and ponds by 7.1% (12.6 km2) in continuous permafrost, 2.5% (15.5 km2) in discontinuous permafrost, 14.4% (74.6 km2) in sporadic permafrost, and 10.4% (17.2 km2) in isolated permafrost. In general, our observations indicate that lake expansion and drainage in western Alaska are occurring in parallel. As the climate continues to warm and permafrost continues to thaw, we expect an increase in the number of drainage events in this region leading to the formation of higher numbers of small remnant lakes.

     
    more » « less
  4. Lakes are abundant features on coastal plains of the Arctic, providing important fish and wildlife habitat and water supply for villages and industry, but also interact with frozen ground (permafrost) and the carbon it stores. Most of these lakes are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Dating the timing of lake drainage can improve our understanding of the causes and consequences of DTLB formation. This suite of 14C (Carbon-14) ages provides insight into the timing of lake drainage on the North Slope of Alaska across a range of ecosystems and surficial geology types. 
    more » « less
  5. Lakes are abundant features on coastal plains of the Arctic, providing important fish and wildlife habitat and water supply for villages and industry, but also interact with frozen ground (permafrost) and the carbon it stores. Most of these lakes are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Dating the timing of lake drainage can improve our understanding of the causes and consequences of DTLB formation. This suite of 14C (Carbon-14) ages provides insight into the timing of lake drainage on the North Slope of Alaska across a range of ecosystems and surficial geology types. 
    more » « less