skip to main content

Title: Periglacial Lake Origin Influences the Likelihood of Lake Drainage in Northern Alaska
Nearly 25% of all lakes on earth are located at high latitudes. These lakes are formed by a combination of thermokarst, glacial, and geological processes. Evidence suggests that the origin of periglacial lake formation may be an important factor controlling the likelihood of lakes to drain. However, geospatial data regarding the spatial distribution of these dominant Arctic and subarctic lakes are limited or do not exist. Here, we use lake-specific morphological properties using the Arctic Digital Elevation Model (DEM) and Landsat imagery to develop a Thermokarst lake Settlement Index (TSI), which was used in combination with available geospatial datasets of glacier history and yedoma permafrost extent to classify Arctic and subarctic lakes into Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes, respectively. This lake origin dataset was used to evaluate the influence of lake origin on drainage between 1985 and 2019 in northern Alaska. The lake origin map and lake drainage datasets were synthesized using five-year seamless Landsat ETM+ and OLI image composites. Nearly 35,000 lakes and their properties were characterized from Landsat mosaics using an object-based image analysis. Results indicate that the pattern of lake drainage varied by lake origin, and the proportion of lakes that completely drained (i.e., >60% more » area loss) between 1985 and 2019 in Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes were 12.1, 9.5, 8.7, and 0.0%, respectively. The lakes most vulnerable to draining were small thermokarst (non-yedoma) lakes (12.7%) and large yedoma lakes (12.5%), while the most resilient were large and medium-sized glacial lakes (4.9 and 4.1%) and Maar lakes (0.0%). This analysis provides a simple remote sensing approach to estimate the spatial distribution of dominant lake origins across variable physiography and surficial geology, useful for discriminating between vulnerable versus resilient Arctic and subarctic lakes that are likely to change in warmer and wetter climates. « less
Award ID(s):
1928048 1927772
Publication Date:
Journal Name:
Remote Sensing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes drainingmore »year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.

    « less
  2. Abstract
    Assessment of lakes for their future potential to drain relied on the 2002/03 airborne Interferometric Synthetic Aperture Radar (IFSAR) Digital Surface Model (DSM) data for the western Arctic Coastal Plain in northern Alaska. Lakes were extracted from the IfSAR DSM using a slope derivative and manual correction (Jones et al., 2017). The vertical uncertainty for correctly detecting lake-based drainage gradients with the IfSAR DSM was defined by comparing surface elevation differences of several overlapping DSM tile edges. This comparison showed standard deviations of elevation between overlapping IfSAR tiles ranging from 0.0 to 0.6 meters (m). Thus, we chose a minimum height difference of 0.6 m to represent a detectable elevation gradient adjacent to a lake as being most likely to contribute to a rapid drainage event. This value is also in agreement with field verified estimates of the relative vertical accuracy (~0.5 m) of the DSM dataset around Utqiaġvik (formerly Barrow) (Manley et al., 2005) and the stated vertical RMSE (~1.0 m) of the DSM data (Intermap, 2010). Development of the potential lake drainage dataset involved several processing steps. First, lakes were classified as potential future drainage candidates if the difference between the elevation of the lake surface andMore>>
  3. Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers areexpected to increase in response to warming and associated permafrost thaw.However, the lack of appropriate land cover datasets for scalingfield-measured methane emissions to circumpolar scales has contributed to alarge uncertainty for our understanding of present-day and future methaneemissions. Here we present the Boreal–Arctic Wetland and Lake Dataset(BAWLD), a land cover dataset based on an expert assessment, extrapolatedusing random forest modelling from available spatial datasets of climate,topography, soils, permafrost conditions, vegetation, wetlands, and surfacewater extents and dynamics. In BAWLD, we estimate the fractional coverage offive wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes(17 % of the global land surface). Land cover classes were defined usingcriteria that ensured distinct methane emissions among classes, as indicatedby a co-developed comprehensive dataset of methane flux observations. InBAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain)with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetlandclasses, covering ∼ 28 % each of the total wetland area,while the highest-methane-emitting marsh and tundra wetland classes occupied5 % and 12 %, respectively. Lakes, defined to include all lentic open-waterecosystems regardless of size, covered 1.4 × 106 km2(6 % of domain).more »Low-methane-emitting large lakes (>10 km2) and glacial lakes jointly represented 78 % of the total lakearea, while high-emitting peatland and yedoma lakes covered 18 % and 4 %,respectively. Small (<0.1 km2) glacial, peatland, and yedomalakes combined covered 17 % of the total lake area but contributeddisproportionally to the overall spatial uncertainty in lake area with a95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12  × 106 km2 (0.5 % of domain), of which 8 % was associated withhigh-methane-emitting headwaters that drain organic-rich landscapes.Distinct combinations of spatially co-occurring wetland and lake classeswere identified across the BAWLD domain, allowing for the mapping of“wetscapes” that have characteristic methane emission magnitudes andsensitivities to climate change at regional scales. With BAWLD, we provide adataset which avoids double-accounting of wetland, lake, and river extentsand which includes confidence intervals for each land cover class. As such,BAWLD will be suitable for many hydrological and biogeochemical modellingand upscaling efforts for the northern boreal and arctic region, inparticular those aimed at improving assessments of current and futuremethane emissions. Data are freely available at (Olefeldt et al., 2021).« less
  4. Abstract. Northwestern Alaska has been highly affected by changing climatic patternswith new temperature and precipitation maxima over the recent years. Inparticular, the Baldwin and northern Seward peninsulas are characterized byan abundance of thermokarst lakes that are highly dynamic and prone to lakedrainage like many other regions at the southern margins of continuouspermafrost. We used Sentinel-1 synthetic aperture radar (SAR) and PlanetCubeSat optical remote sensing data to analyze recently observed widespreadlake drainage. We then used synoptic weather data, climate model outputs andlake ice growth simulations to analyze potential drivers and future pathwaysof lake drainage in this region. Following the warmest and wettest winter onrecord in 2017/2018, 192 lakes were identified as having completely orpartially drained by early summer 2018, which exceeded the average drainagerate by a factor of ∼ 10 and doubled the rates of the previousextreme lake drainage years of 2005 and 2006. The combination of abundantrain- and snowfall and extremely warm mean annual air temperatures (MAATs),close to 0 ∘C, may have led to the destabilization of permafrostaround the lake margins. Rapid snow melt and high amounts of excessmeltwater further promoted rapid lateral breaching at lake shores andconsequently sudden drainage of some of the largest lakes of the studyregion that have likelymore »persisted for millennia. We hypothesize that permafrostdestabilization and lake drainage will accelerate and become the dominantdrivers of landscape change in this region. Recent MAATs are already withinthe range of the predictions by the University of Alaska Fairbanks' Scenarios Network for Alaska and Arctic Planning (UAF SNAP) ensemble climate predictions inscenario RCP6.0 for 2100. With MAAT in 2019 just below 0 ∘C at the nearby Kotzebue, Alaska, climate station, permafrost aggradation in drained lake basins will become less likely after drainage, strongly decreasing the potential for freeze-locking carbon sequestered in lake sediments, signifying a prominent regime shift in ice-rich permafrost lowland regions.« less
  5. Abstract
    Lakes are abundant features on coastal plains of the Arctic and most are termed &#34;thermokarst&#34; because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Datasets presented here document water level and temperature (surface and ground) regimes for a large (38 sites) array of lake with high drainage potential and lake basin (DTLBS), which have already drained, located on differing terrain units of Alaska&#39;s Arctic Coastal Plain. Lake data was measured along deep protected shorelines using pressure transducers to record hourly water level and bed temperature. Wetland (DTLB) data was also measured with pressure transducers and ground thermistors at 25 and 100 centimeters (cm) depth. Of special interest at some DTLB sites was the potential occurrence of snow-dam outburst events during the early summer snowmelt periods. In these cases, pressure transducers were set to log at 10 minute intervals for this period. All data archived here areMore>>