Title: Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s
Abstract
Lakes are an important ecosystem component and geomorphological agent in northern high latitudes and it is important to understand how lake initiation, expansion and drainage may change as high latitudes continue to warm. In this study, we utilized Landsat Multispectral Scanner System images from the 1970s (1972, 1974, and 1975) and Operational Land Imager images from the 2010s (2013, 2014, and 2015) to assess broad-scale distribution and changes of lakes larger than 1 ha across the four permafrost zones (continuous, discontinuous, sporadic, and isolated extent) in western Alaska. Across our 68 000 km2study area, we saw a decline in overall lake coverage across all permafrost zones with the exception of the sporadic permafrost zone. In the continuous permafrost zone lake area declined by −6.7% (−65.3 km2), in the discontinuous permafrost zone by −1.6% (−55.0 km2), in the isolated permafrost zone by −6.9% (−31.5 km2) while lake cover increased by 2.7% (117.2 km2) in the sporadic permafrost zone. Overall, we observed a net drainage of lakes larger than 10 ha in the study region. Partial drainage of these medium to large lakes created an increase in the area covered by small water bodies <10 ha, in the form of remnant lakes more »
and ponds by 7.1% (12.6 km2) in continuous permafrost, 2.5% (15.5 km2) in discontinuous permafrost, 14.4% (74.6 km2) in sporadic permafrost, and 10.4% (17.2 km2) in isolated permafrost. In general, our observations indicate that lake expansion and drainage in western Alaska are occurring in parallel. As the climate continues to warm and permafrost continues to thaw, we expect an increase in the number of drainage events in this region leading to the formation of higher numbers of small remnant lakes.
Lara, Mark J.; Chen, Yaping; Jones, Benjamin M.(
, Environmental Research Letters)
Abstract
Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes drainingmore »year−1). However this 40 year negative trend was reversed during the most recent time-period (2015–2019), with observations of catastrophic drainage among the highest on record (i.e. 100–250 lakes draining year−1), the majority of which occurred in northwestern Alaska. Gradual drainage processes were driven by lake morphology, summer air and lake temperature, snow cover, active layer depth, and the thermokarst lake settlement index (R2adj= 0.42, CV = 0.35,p< 0.0001), whereas, catastrophic drainage was driven by the thawing season length, total precipitation, permafrost thickness, and lake temperature (R2adj= 0.75, CV = 0.67,p< 0.0001). Models forecast a continued decline in lake area across northern Alaska by 15%–21% by 2050. However these estimates are conservative, as the anticipated amplitude of future climate change were well-beyond historical variability and thus insufficient to forecast abrupt ‘catastrophic’ drainage processes. Results highlight the urgency to understand the potential ecological responses and feedbacks linked with ongoing Arctic landscape reorganization.
Hussain, Mir Zaman; Hamilton, Stephen; Robertson, G. Philip; Basso, Bruno(
)
Abstract
Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may
leach legacy P from past cropland management.
Methods
Experimental details The Biofuel Cropping System Experiment (BCSE) is located at the W.K. Kellogg Biological Station (KBS) (42.3956° N, 85.3749° W; elevation 288 m asl) in southwestern Michigan, USA. This site is a part of the Great Lakes Bioenergy Research Center (www.glbrc.org) and is a Long-term Ecological Research site (www.lter.kbs.msu.edu). Soils are mesic Typic Hapludalfs developed on glacial outwash54 with high sand content (76% in the upper 150 cm) intermixed with silt-rich loess in the upper 50 cm55. The water table lies approximately 12–14 m below the surface. The climate is humid temperate with a mean annual air temperature of 9.1 °C and annual precipitation of 1005 mm, 511 mm of which falls between May and September (1981–2010)56,57. The BCSE was established as a randomized complete block design in 2008 on preexisting farmland. Prior to BCSE establishment, the field was used for grain crop and alfalfa (Medicago sativa L.) production for several decades. Between 2003 and 2007, the field received a total of ~ 300 kg P ha−1 as manure, and the southern half, which contains one of four replicate plots, received an additional 206 kg P ha−1 as inorganic fertilizer. The experimental design consists of five randomized blocks each containing one replicate plot (28 by 40 m) of 10 cropping systems (treatments) (Supplementary Fig. S1; also see Sanford et al.58). Block 5 is not included in the present study. Details on experimental design and site history are provided in Robertson and Hamilton57 and Gelfand et al.59. Leaching of P is analyzed in six of the cropping systems: (i) continuous no-till corn, (ii) switchgrass, (iii) miscanthus, (iv) a mixture of five species of native grasses, (v) a restored native prairie containing 18 plant species (Supplementary Table S1), and (vi) hybrid poplar. Agronomic management Phenological cameras and field observations indicated that the perennial herbaceous crops emerged each year between mid-April and mid-May. Corn was planted each year in early May. Herbaceous crops were harvested at the end of each growing season with the timing depending on weather: between October and November for corn and between November and December for herbaceous perennial crops. Corn stover was harvested shortly after corn grain, leaving approximately 10 cm height of stubble above the ground. The poplar was harvested only once, as the culmination of a 6-year rotation, in the winter of 2013–2014. Leaf emergence and senescence based on daily phenological images indicated the beginning and end of the poplar growing season, respectively, in each year. Application of inorganic fertilizers to the different crops followed a management approach typical for the region (Table 1). Corn was fertilized with 13 kg P ha−1 year−1 as starter fertilizer (N-P-K of 19-17-0) at the time of planting and an additional 33 kg P ha−1 year−1 was added as superphosphate in spring 2015. Corn also received N fertilizer around the time of planting and in mid-June at typical rates for the region (Table 1). No P fertilizer was applied to the perennial grassland or poplar systems (Table 1). All perennial grasses (except restored prairie) were provided 56 kg N ha−1 year−1 of N fertilizer in early summer between 2010 and 2016; an additional 77 kg N ha−1 was applied to miscanthus in 2009. Poplar was fertilized once with 157 kg N ha−1 in 2010 after the canopy had closed. Sampling of subsurface soil water and soil for P determination Subsurface soil water samples were collected beneath the root zone (1.2 m depth) using samplers installed at approximately 20 cm into the unconsolidated sand of 2Bt2 and 2E/Bt horizons (soils at the site are described in Crum and Collins54). Soil water was collected from two kinds of samplers: Prenart samplers constructed of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) in replicate blocks 1 and 2 and Eijkelkamp ceramic samplers (http://www.eijkelkamp.com) in blocks 3 and 4 (Supplementary Fig. S1). The samplers were installed in 2008 at an angle using a hydraulic corer, with the sampling tubes buried underground within the plots and the sampler located about 9 m from the plot edge. There were no consistent differences in TDP concentrations between the two sampler types. Beginning in the 2009 growing season, subsurface soil water was sampled at weekly to biweekly intervals during non-frozen periods (April–November) by applying 50 kPa of vacuum to each sampler for 24 h, during which the extracted water was collected in glass bottles. Samples were filtered using different filter types (all 0.45 µm pore size) depending on the volume of leachate collected: 33-mm dia. cellulose acetate membrane filters when volumes were less than 50 mL; and 47-mm dia. Supor 450 polyethersulfone membrane filters for larger volumes. Total dissolved phosphorus (TDP) in water samples was analyzed by persulfate digestion of filtered samples to convert all phosphorus forms to soluble reactive phosphorus, followed by colorimetric analysis by long-pathlength spectrophotometry (UV-1800 Shimadzu, Japan) using the molybdate blue method60, for which the method detection limit was ~ 0.005 mg P L−1. Between 2009 and 2016, soil samples (0–25 cm depth) were collected each autumn from all plots for determination of soil test P (STP) by the Bray-1 method61, using as an extractant a dilute hydrochloric acid and ammonium fluoride solution, as is recommended for neutral to slightly acidic soils. The measured STP concentration in mg P kg−1 was converted to kg P ha−1 based on soil sampling depth and soil bulk density (mean, 1.5 g cm−3). Sampling of water samples from lakes, streams and wells for P determination In addition to chemistry of soil and subsurface soil water in the BCSE, waters from lakes, streams, and residential water supply wells were also sampled during 2009–2016 for TDP analysis using Supor 450 membrane filters and the same analytical method as for soil water. These water bodies are within 15 km of the study site, within a landscape mosaic of row crops, grasslands, deciduous forest, and wetlands, with some residential development (Supplementary Fig. S2, Supplementary Table S2). Details of land use and cover change in the vicinity of KBS are given in Hamilton et al.48, and patterns in nutrient concentrations in local surface waters are further discussed in Hamilton62. Leaching estimates, modeled drainage, and data analysis Leaching was estimated at daily time steps and summarized as total leaching on a crop-year basis, defined from the date of planting or leaf emergence in a given year to the day prior to planting or emergence in the following year. TDP concentrations (mg L−1) of subsurface soil water were linearly interpolated between sampling dates during non-freezing periods (April–November) and over non-sampling periods (December–March) based on the preceding November and subsequent April samples. Daily rates of TDP leaching (kg ha−1) were calculated by multiplying concentration (mg L−1) by drainage rates (m3 ha−1 day−1) modeled by the Systems Approach for Land Use Sustainability (SALUS) model, a crop growth model that is well calibrated for KBS soil and environmental conditions. SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, N fertilizer application, and tillage), and genetics63. The SALUS water balance sub-model simulates surface runoff, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons63. The SALUS model has been used in studies of evapotranspiration48,51,64 and nutrient leaching20,65,66,67 from KBS soils, and its predictions of growing-season evapotranspiration are consistent with independent measurements based on growing-season soil water drawdown53 and evapotranspiration measured by eddy covariance68. Phosphorus leaching was assumed insignificant on days when SALUS predicted no drainage. Volume-weighted mean TDP concentrations in leachate for each crop-year and for the entire 7-year study period were calculated as the total dissolved P leaching flux (kg ha−1) divided by the total drainage (m3 ha−1). One-way ANOVA with time (crop-year) as the fixed factor was conducted to compare total annual drainage rates, P leaching rates, volume-weighted mean TDP concentrations, and maximum aboveground biomass among the cropping systems over all seven crop-years as well as with TDP concentrations from local lakes, streams, and groundwater wells. When a significant (α = 0.05) difference was detected among the groups, we used the Tukey honest significant difference (HSD) post-hoc test to make pairwise comparisons among the groups. In the case of maximum aboveground biomass, we used the Tukey–Kramer method to make pairwise comparisons among the groups because the absence of poplar data after the 2013 harvest resulted in unequal sample sizes. We also used the Tukey–Kramer method to compare the frequency distributions of TDP concentrations in all of the soil leachate samples with concentrations in lakes, streams, and groundwater wells, since each sample category had very different numbers of measurements.
Other
Individual spreadsheets in “data table_leaching_dissolved organic carbon and nitrogen.xls” 1. annual precip_drainage 2. biomass_corn, perennial grasses 3. biomass_poplar 4. annual N leaching _vol-wtd conc 5. Summary_N leached 6. annual DOC leachin_vol-wtd conc 7. growing season length 8. correlation_nh4 VS no3 9. correlations_don VS no3_doc VS don Each spreadsheet is described below along with an explanation of variates. Note that ‘nan’ indicate data are missing or not available. First row indicates header; second row indicates units 1. Spreadsheet: annual precip_drainage Description: Precipitation measured from nearby Kellogg Biological Station (KBS) Long Term Ecological Research (LTER) Weather station, over 2009-2016 study period. Data shown in Figure 1; original data source for precipitation (https://lter.kbs.msu.edu/datatables/7). Drainage estimated from SALUS crop model. Note that drainage is percolation out of the root zone (0-125 cm). Annual precipitation and drainage values shown here are calculated for growing and non-growing crop periods. Variate Description year year of the observation crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” precip_G precipitation during growing period (milliMeter) precip_NG precipitation during non-growing period (milliMeter) drainage_G drainage during growing period (milliMeter) drainage_NG drainage during non-growing period (milliMeter) 2. Spreadsheet: biomass_corn, perennial grasses Description: Maximum aboveground biomass measurements from corn, switchgrass, miscanthus, native grass and restored prairie plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Variate Description year year of the observation date day of the observation (mm/dd/yyyy) crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” replicate each crop has four replicated plots, R1, R2, R3 and R4 station stations (S1, S2 and S3) of samplings within the plot. For more details, refer to link (https://data.sustainability.glbrc.org/protocols/156) species plant species that are rooted within the quadrat during the time of maximum biomass harvest. See protocol for more information, refer to link (http://lter.kbs.msu.edu/datatables/36) For maize biomass, grain and whole biomass reported in the paper (weed biomass or surface litter are excluded). Surface litter biomass not included in any crops; weed biomass not included in switchgrass and miscanthus, but included in grass mixture and prairie. fraction Fraction of biomass biomass_plot biomass per plot on dry-weight basis (Grams_Per_SquareMeter) biomass_ha biomass (megaGrams_Per_Hectare) by multiplying column biomass per plot with 0.01 3. Spreadsheet: biomass_poplar Description: Maximum aboveground biomass measurements from poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Note that poplar biomass was estimated from crop growth curves until the poplar was harvested in the winter of 2013-14. Variate Description year year of the observation method methods of poplar biomass sampling date day of the observation (mm/dd/yyyy) replicate each crop has four replicated plots, R1, R2, R3 and R4 diameter_at_ground poplar diameter (milliMeter) at the ground diameter_at_15cm poplar diameter (milliMeter) at 15 cm height biomass_tree biomass per plot (Grams_Per_Tree) biomass_ha biomass (megaGrams_Per_Hectare) by multiplying biomass per tree with 0.01 4. Spreadsheet: annual N leaching_vol-wtd conc Description: Annual leaching rate (kiloGrams_N_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_N_Per_Liter) of nitrate (no3) and dissolved organic nitrogen (don) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen leached and volume-wtd mean N concentration shown in Figure 3a and Figure 3b, respectively. Note that ammonium (nh4) concentration were much lower and often undetectable (<0.07 milliGrams_N_Per_Liter). Also note that in 2009 and 2010 crop-years, data from some replicates are missing. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year year of the observation replicate each crop has four replicated plots, R1, R2, R3 and R4 no3 leached annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached annual leaching rates of don (kiloGrams_N_Per_Hectare) vol-wtd no3 conc. Volume-weighted mean no3 concentration (milliGrams_N_Per_Liter) vol-wtd don conc. Volume-weighted mean don concentration (milliGrams_N_Per_Liter) 5. Spreadsheet: summary_N leached Description: Summary of total amount and forms of N leached (kiloGrams_N_Per_Hectare) and the percent of applied N lost to leaching over the seven years for corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen amount leached shown in Figure 4a and percent of applied N lost shown in Figure 4b. Note the fraction of unleached N includes in harvest, accumulation in root biomass, soil organic matter or gaseous N emissions were not measured in the study. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” no3 leached annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached annual leaching rates of don (kiloGrams_N_Per_Hectare) N unleached N unleached (kiloGrams_N_Per_Hectare) in other sources are not studied % of N applied N lost to leaching % of N applied N lost to leaching 6. Spreadsheet: annual DOC leachin_vol-wtd conc Description: Annual leaching rate (kiloGrams_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_Per_Liter) of dissolved organic carbon (DOC) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for DOC leached and volume-wtd mean DOC concentration shown in Figure 5a and Figure 5b, respectively. Note that in 2009 and 2010 crop-years, water samples were not available for DOC measurements. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year year of the observation replicate each crop has four replicated plots, R1, R2, R3 and R4 doc leached annual leaching rates of nitrate (kiloGrams_Per_Hectare) vol-wtd doc conc. volume-weighted mean doc concentration (milliGrams_Per_Liter) 7. Spreadsheet: growing season length Description: Growing season length (days) of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in the Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Date shown in Figure S2. Note that growing season is from the date of planting or emergence to the date of harvest (or leaf senescence in case of poplar). Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year year of the observation growing season length growing season length (days) 8. Spreadsheet: correlation_nh4 VS no3 Description: Correlation of ammonium (nh4+) and nitrate (no3-) concentrations (milliGrams_N_Per_Liter) in the leachate samples from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data shown in Figure S3. Note that nh4+ concentration in the leachates was very low compared to no3- and don concentration and often undetectable in three crop-years (2013-2015) when measurements are available. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” date date of the observation (mm/dd/yyyy) replicate each crop has four replicated plots, R1, R2, R3 and R4 nh4 conc nh4 concentration (milliGrams_N_Per_Liter) no3 conc no3 concentration (milliGrams_N_Per_Liter) 9. Spreadsheet: correlations_don VS no3_doc VS don Description: Correlations of don and nitrate concentrations (milliGrams_N_Per_Liter); and doc (milliGrams_Per_Liter) and don concentrations (milliGrams_N_Per_Liter) in the leachate samples of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data of correlation of don and nitrate concentrations shown in Figure S4 a and doc and don concentrations shown in Figure S4 b. Variate Description crop “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year year of the observation don don concentration (milliGrams_N_Per_Liter) no3 no3 concentration (milliGrams_N_Per_Liter) doc doc concentration (milliGrams_Per_Liter) More>>
Assessment of lakes for their future potential to drain relied on the 2002/03 airborne Interferometric Synthetic Aperture Radar (IFSAR) Digital Surface Model (DSM) data for the western Arctic Coastal Plain in northern Alaska. Lakes were extracted from the IfSAR DSM using a slope derivative and manual correction (Jones et al., 2017). The vertical uncertainty for correctly detecting lake-based drainage gradients with the IfSAR DSM was defined by comparing surface elevation differences of several overlapping DSM tile edges. This comparison showed standard deviations of elevation between overlapping IfSAR tiles ranging from 0.0 to 0.6 meters (m). Thus, we chose a minimum height difference of 0.6 m to represent a detectable elevation gradient adjacent to a lake as being most likely to contribute to a rapid drainage event. This value is also in agreement with field verified estimates of the relative vertical accuracy (~0.5 m) of the DSM dataset around Utqiaġvik (formerly Barrow) (Manley et al., 2005) and the stated vertical RMSE (~1.0 m) of the DSM data (Intermap, 2010). Development of the potential lake drainage dataset involved several processing steps. First, lakes were classified as potential future drainage candidates if the difference between the elevation of the lake surface and
the lowest elevation within a 100 m buffer of the lake shoreline exceeded our chosen threshold of 0.6 m. Next, we selected lakes with a minimum size of 10 ha to match the historic lake drainage dataset. We further filtered the dataset by selecting lakes estimated to have low hydrological connectivity based on relations between lake contributing area as determined for specific surficial geology types and presented in Jones et al. (2017). This was added to the future projection workflow to isolate the lake population that likely responds to changes in surface area driven largely by geomorphic change as opposed to differences in surface hydrology. Lakes within a basin with low to no hydrologic connectivity that had an elevation change gradient between the lake surface and surrounding landscape are considered likely locations to assess for future drainage potential. Further, the greater the elevation difference, the greater the drainage potential. This dataset provided a first-order estimate of lakes classified as being prone to future drainage. We further refined our assessment of potential drainage lakes by identifying the location of the point with the lowest elevation within the 100 m buffer of the lake shoreline and manually interpreted lakes to have a high drainage potential based on the location of the likely drainage point to known lake drainage pathways using circa 2002 orthophotography or more recent high resolution satellite imagery available for the Western Coastal Arctic Plain (WACP). Lakes classified as having a high drainage potential typically had the likely drainage location associated with one or more of the following: (1) an adjacent lake, (2) the cutbank of a river, (3) the ocean, (4) were located in an area with dense ice-wedge networks, (5) appeared to coincide with a potentially headward eroding stream, or (6) were associated with thermokarst lake shoreline processes in the moderate to high ground ice content terrain. We also added information on potential lake drainage pathways to the high potential drainage dataset by manually interpreting the landform associated with the likely drainage site to draw comparisons with the historic lake drainage dataset. More>>
Lara, Mark Jason; Chipman, Melissa Lynn(
, Remote Sensing)
Nearly 25% of all lakes on earth are located at high latitudes. These lakes are formed by a combination of thermokarst, glacial, and geological processes. Evidence suggests that the origin of periglacial lake formation may be an important factor controlling the likelihood of lakes to drain. However, geospatial data regarding the spatial distribution of these dominant Arctic and subarctic lakes are limited or do not exist. Here, we use lake-specific morphological properties using the Arctic Digital Elevation Model (DEM) and Landsat imagery to develop a Thermokarst lake Settlement Index (TSI), which was used in combination with available geospatial datasets of glacier history and yedoma permafrost extent to classify Arctic and subarctic lakes into Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes, respectively. This lake origin dataset was used to evaluate the influence of lake origin on drainage between 1985 and 2019 in northern Alaska. The lake origin map and lake drainage datasets were synthesized using five-year seamless Landsat ETM+ and OLI image composites. Nearly 35,000 lakes and their properties were characterized from Landsat mosaics using an object-based image analysis. Results indicate that the pattern of lake drainage varied by lake origin, and the proportion of lakes that completely drained (i.e., >60%more »area loss) between 1985 and 2019 in Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes were 12.1, 9.5, 8.7, and 0.0%, respectively. The lakes most vulnerable to draining were small thermokarst (non-yedoma) lakes (12.7%) and large yedoma lakes (12.5%), while the most resilient were large and medium-sized glacial lakes (4.9 and 4.1%) and Maar lakes (0.0%). This analysis provides a simple remote sensing approach to estimate the spatial distribution of dominant lake origins across variable physiography and surficial geology, useful for discriminating between vulnerable versus resilient Arctic and subarctic lakes that are likely to change in warmer and wetter climates.« less
Permafrost is ground that remains frozen year-round due to a cold climate; the active layer is the ground above the permafrost that thaws and re-freezes each year. Nearly 40 million acres of National Park Service (NPS) land in Alaska, similar to the size of Florida, lie within the zone of continuous or discontinuous permafrost. Permafrost can be classified as continuous (>90% of land area underlain by permafrost), discontinuous (90%-50%), sporadic (50%-10%), or isolated (<10%; Ferrians 1965). Permafrost is most vulnerable to climatic warming when its temperature is within a few degrees of thawing. Large-scale permafrost thawing would lead to a major reconfiguration of the landscape through the development of thermokarst (irregular topography resulting from ground ice melting).
Lindgren, Prajna R., Farquharson, Louise M., Romanovsky, Vladimir E., and Grosse, Guido. Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s. Environmental Research Letters 16.2 Web. doi:10.1088/1748-9326/abd270.
Lindgren, Prajna R., Farquharson, Louise M., Romanovsky, Vladimir E., & Grosse, Guido. Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s. Environmental Research Letters, 16 (2). https://doi.org/10.1088/1748-9326/abd270
Lindgren, Prajna R., Farquharson, Louise M., Romanovsky, Vladimir E., and Grosse, Guido.
"Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s". Environmental Research Letters 16 (2). Country unknown/Code not available: IOP Publishing. https://doi.org/10.1088/1748-9326/abd270.https://par.nsf.gov/biblio/10361368.
@article{osti_10361368,
place = {Country unknown/Code not available},
title = {Landsat-based lake distribution and changes in western Alaska permafrost regions between the 1970s and 2010s},
url = {https://par.nsf.gov/biblio/10361368},
DOI = {10.1088/1748-9326/abd270},
abstractNote = {Abstract Lakes are an important ecosystem component and geomorphological agent in northern high latitudes and it is important to understand how lake initiation, expansion and drainage may change as high latitudes continue to warm. In this study, we utilized Landsat Multispectral Scanner System images from the 1970s (1972, 1974, and 1975) and Operational Land Imager images from the 2010s (2013, 2014, and 2015) to assess broad-scale distribution and changes of lakes larger than 1 ha across the four permafrost zones (continuous, discontinuous, sporadic, and isolated extent) in western Alaska. Across our 68 000 km2study area, we saw a decline in overall lake coverage across all permafrost zones with the exception of the sporadic permafrost zone. In the continuous permafrost zone lake area declined by −6.7% (−65.3 km2), in the discontinuous permafrost zone by −1.6% (−55.0 km2), in the isolated permafrost zone by −6.9% (−31.5 km2) while lake cover increased by 2.7% (117.2 km2) in the sporadic permafrost zone. Overall, we observed a net drainage of lakes larger than 10 ha in the study region. Partial drainage of these medium to large lakes created an increase in the area covered by small water bodies <10 ha, in the form of remnant lakes and ponds by 7.1% (12.6 km2) in continuous permafrost, 2.5% (15.5 km2) in discontinuous permafrost, 14.4% (74.6 km2) in sporadic permafrost, and 10.4% (17.2 km2) in isolated permafrost. In general, our observations indicate that lake expansion and drainage in western Alaska are occurring in parallel. As the climate continues to warm and permafrost continues to thaw, we expect an increase in the number of drainage events in this region leading to the formation of higher numbers of small remnant lakes.},
journal = {Environmental Research Letters},
volume = {16},
number = {2},
publisher = {IOP Publishing},
author = {Lindgren, Prajna R. and Farquharson, Louise M. and Romanovsky, Vladimir E. and Grosse, Guido},
}