The Late Cretaceous paleogeography of Southern California potentially plays a central role in resolving conflicting models for postulated large-magnitude dextral translations along the western margin of North America (the Baja-BC hypothesis) and the beginning of the Laramide orogeny. The Mt. Pinos sector of the Southern California Batholith provides a unique window into this time because it preserves evidence for a kinematically and temporally partitioned fault system that includes a ductile shear zone (the Tumamait shear zone) and a ductile-to-brittle thrust fault (the Sawmill thrust). These two structures accommodated intra-arc strain during the Late Cretaceous to Paleocene during three phases of deformation (D3-D5) that are superimposed on older (D1 and D2) structures. D1 structures only occur in Pre-Mesozoic rocks and provide a reference frame for understanding subsequent deformation phases. D2 structures form part of a previously unmapped dextral-normal shear zone that predates the Tumamait shear zone. The initiation of displacements within the Tumamait shear zone is recorded by the formation of D3 mylonites which everywhere record reverse-sinistral movement. Petrochronology of syn- D3 titanites give lower-intercept 206Pb/238U dates ranging from 77.0 to 74.0 Ma and upper amphibolite-facies temperatures ranging from 699 to 718°C. Subsequent folding of the D3 mylonites during D4 was synchronous with late-stage, peraluminous magmatism at ca. 70 Ma. Near the Sawmill thrust, the D4 event resulted in a S4 crenulation cleavage and asymmetric, overturned folds that record top-to-the-NE tectonic displacements. NE-directed thrusting along the Sawmill thrust occurred at 67-66 Ma is interpreted to have been kinematically linked to D4 deformation. This thrust placed upper plate rocks of the Southern California Batholith above the Late Cretaceous Pelona schist. We interpret deformational fabrics in the Mt. Pinos area to record a kinematically partitioned, transpressional system that involved sinistral-reverse shearing (D3) closely followed by folding and arc-directed thrusting (D4-D5). We speculate that D3 structures developed in response to opening of the Kula-Farallon plate boundary and we hypothesize that the Kula-Farallon-North American plate triple junction was located at the present-day location of the Garlock Fault at ca. 85 Ma thereby segmenting the arc at this location. This geometry resulted in in dextral shearing in the Sierra Nevada Batholith (and northward) and sinistral shearing in the Southern California Batholith and Baja California. Continued subduction of the Farallon plate beneath the Southern California Batholith led to a major arc flare-up event from 90-70 Ma which was associated with D3 sinistral transpression. We interpret D3-D5 structures to record oblique convergence and the underthrusting of the Hess oceanic plateau beneath the Southern California Batholith at ca. 70-66 Ma. Our model for the segmentation of the California arc is compatible with a moderate (1000-1600 km), ‘Sierra-BC’ translation model in which the Insular superterrane was located north of the Southern California Batholith in the Late Cretaceous.
more »
« less
San Albino, Nicaragua: A low-angle, thrust-controlled orogenic gold deposit
Abstract The San Albino deposit is an orogenic gold occurrence hosted by a low-angle thrust that is the site of a new open-pit mine in northern Nicaragua. The deposit is hosted in greenschist facies rocks of the Jurassic metasedimentary Neuvo Segovia Formation. The schist was uplifted and exposed during arc accretion and Cretaceous thin-skin deformation, forming the NE-striking Colon fold-and-thrust belt. Deformation included emplacement of the 119 to 113 Ma NE-trending Dipilto batholith into the regionally metamorphosed clastic rocks about 5 km northwest of the San Albino deposit. Mineralization is dominated by three laminated quartz vein systems (i.e., San Albino, Naranjo, Arras) that broadly follow shallowly dipping (approx. 30°) carbonaceous shears roughly concordant to schistosity along the limbs of a doubly plunging antiform. The three main parallel shears are each separated by about 90 m and individually reach a maximum thickness of about 8 m. Maximum thickness of ore zones is where post-ore local folding and reverse motion along the shallow shears has duplicated the laminated low-angle gold-bearing veins (D2 and early D3). Additional gold was added to the veins, with abundant sulfides, during a subsequent brecciation event of the early formed quartz veins that accompanied progressive thrusting (late D3). This predated boudinage of the veins during continued compression and thrust loading (D4); high gold grades are particularly notable along pyrite- and arsenopyrite-bearing stylolites formed during D4 pressure solution. The D2 to D3 gold event is likely coeval with Albian uplift of the Dipilto batholith and with back thrusting in the schist aided by the stress inhomogeneities provided by the igneous complex. Low-angle thrust-controlled orogenic gold deposits may represent world-class exploration targets because of their large linear footprints, although they are traditionally looked at as less favorable exploration targets relative to gold systems developed more commonly along high-angle reverse faults. Our case study of the San Albino deposit shows that although low-angle deposits are not inherently misoriented for failure like the more common subvertical reverse fault-related deposits, they may be sites of significant pressure buildup due to hydrothermal mineral precipitation during initial water-rock interaction or slight temperature decreases along the low-angle flow path. Resulting fluid cycling may lead to thick laminated vein development, such as seen at San Albino, where especially high-grade zones may be associated with local steepening and/or dilational zones within the broader, low-angle vein-hosting shear system.
more »
« less
- PAR ID:
- 10525195
- Publisher / Repository:
- Society of Economic Geologists
- Date Published:
- Journal Name:
- Economic Geology
- Volume:
- 119
- Issue:
- 2
- ISSN:
- 0361-0128
- Page Range / eLocation ID:
- 395 to 420
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the eastern San Gabriel Mountains, located north of Los Angeles, California, the late Cenozoic Cucamonga thrust has uplifted and exposed the lower crustal root of the Mesozoic Southern California Batholith. We use structural data and U-Pb zircon analyses from these exposures to document changes in the style of intra-arc deformation in the batholith as the Laramide Orogeny began during the Late Cretaceous (at or after ~90 Ma). At the base of the uplifted section, a 4 km-thick package of metasedimentary rock records the intrusion of amphibolite, charnokite and other dikes of probable Jurassic to Early Cretaceous age. The oldest gneissic fabrics (S1, S2) in these rocks record Early Cretaceous partial melting, granulite-facies metamorphism, and top-to-the-S and -SE (present day reference frame) reverse motion on surfaces that dip moderately to the N and NW. These structures define a D1/D2 thrust system that formed on the trench side of the arc and was active during the Early Cretaceous. From 89-77 Ma this thrust system was reactivated by oblique-slip shear zones (D3) that record sinistral-reverse displacements on N- and NW-dipping surfaces. The timing of deformation in these latter shear zones is indicated by the age of 90-85 Ma syn-kinematic intrusions of the Tonalite of San Sevaine Lookout. After emplacement of the tonalite, the lower crustal section was deformed by a series of S-vergent, overturned folds. The emplacement of granodioritic dikes into the axial planes of some of these folds suggests that they formed during the latest stages of D3 transpression and tonalite emplacement. Superimposed on all these structures are a series of ductile-to-brittle thrust faults and folds that appear to be related to formation of the late Cenozoic Cucamonga thrust fault at the southern edge of the San Gabriel mountains. These data show that the Southern California Batholith in the San Gabriel Mountains records a tectonic transition from Early Cretaceous reverse faulting and crustal imbrication on the trench side of the arc to Late Cretaceous transpression and oblique sinistral-reverse deformation during a magmatic flare-up from 89-77 Ma. Another major episode of shortening and crustal imbrication occurred during the late Cenozoic when the Cucamonga thrust uplifted the San Gabriel block.more » « less
-
Abstract Drilling 809‐m Hole U1473A in the gabbro batholith at the Atlantis Bank Oceanic Core Complex (OCC) found two felsic vein generations: late magmatic fractionates, rich in deuteric water, hosted by oxide gabbros, and anatectic veins associated with dike intrusion and introduction of seawater‐derived volatiles. Microtextures show a change from compressional to tensional stress during vein formation. Temperatures and oxidation state were obtained from amphibole‐plagioclase and oxide pairs in the adjacent gabbros. Type I veins generally have reverse shear‐sense, with restricted ΔFMQ, high Mt/Ilm ratios, and low‐amphibole Cl/F indicating deuteric fluids. They formed during percolation and fractionation of Fe‐Ti‐rich melts into the primary olivine gabbro. Type II veins are usually hosted by olivine gabbro, occur at dike contacts and the margins of normal‐sense shear zones. They are undeformed or weakly deformed, with highly variable ΔFMQ, low Mt/Ilm ratios, and high‐amphibole Cl/F, indicating seawater‐derived fluids. The detachment fault on which the gabbro massif was emplaced rooted near the base of the dike‐gabbro transition beneath the rift valley. The ingress of seawater volatiles began at >800°C and penetrated at least ~590 m into the lower crust during extensional faulting in the rift valley and adjacent rift mountains. The sequence of the felsic vein formation likely reflects asymmetric diapiric flow, with a reversal of the stress regime, and a transition from juvenile to seawater‐derived volatiles. This, in turn, is consistent with fault capture leading to the large asymmetries in spreading rates during OCC formations and heat flow beneath the rift mountains.more » « less
-
Hydrothermal ore deposits involve complex fluid-rock interactions, where alteration zones yield information on physicochemical conditions of ore-forming processes and fluid pathways. Lithogeochemical vectors can be used to delineate alteration zones and potentially yield information for targeting ore zones for the exploration of mineral deposits. To be able to recognize these geochemical and mineralogical signatures, it is imperative to understand the underlying ore-forming processes and link them to geochemical vectors. Numerical modeling permits tracking changes in rock chemistry and metal precipitation mechanisms by simulating various alteration and fluid evolution scenarios such as boiling, fluid mixing, fluid-rock interaction, and changes in redox, pH, and temperature. The open-access MINES thermodynamic database (http://tdb.mines.edu) has been recently launched for modeling fluid-rock interaction and the chemical changes related to ore-forming processes, using the program GEM-Selektor (http://gems.web.psi.ch). The philosophy behind the MINES database is to focus on testing a series of numerical modeling projects used to simulate various ore deposits. We present a number of case studies where GEM-Selektor has been successfully applied to simulate ore-forming processes. These include Cu transport and mineralization at the Kansanshi Cu-Au deposit hosted in metasedimentary rocks, and the metasomatism of pegmatites and mobilization of rare earth elements (REEs) in the Strange Lake REE-Zr-Nb mineral deposit. We also use this method to demonstrate the coupling of complex chemical equilibria with reactive mass transport along a fluid flow path for simulating the deposition of Pb and Zn in a Mississippi Valley-type (MVT) deposit and the alteration associated with volcanogenic massive sulfide (VMS) deposits. The long-term goal of this project is the generation of a geochemical vectors database for interpreting field data, using knowledge gained from numerical simulations combined with field observations. This link between fundamental and applied research is expected to significantly advance ore vectoring for the exploration industry.more » « less
-
Late Cretaceous to Paleogene contractional deformation in the southern U.S. Cordillera is commonly attributed to the Laramide Orogeny, in part because of the prevalence of moderate- to high-angle, basement-involved reverse faults. However, it is unclear if the tectonic models developed for the archetypal Laramide foreland belt in the U.S. Rocky Mountain region are applicable to the southern U.S. Cordillera. New geologic mapping of the northern Chiricahua Mountains in southeast Arizona, USA, indicates the presence of an originally sub-horizontal thrust fault, the Fort Bowie fault, and a thin-skinned ramp-flat thrust system that is offset by a younger thrust fault, the Apache Pass fault, that carries basement rocks. Cross-cutting relationships and new geochronologic data indicate deformation on both faults occurred between 60 Ma and 35 Ma. A biotite 40Ar/39Ar plateau age of 48 Ma from the hanging wall of the basement-involved Apache Pass fault is interpreted to record erosion related to reverse fault movement and rock uplift. The presence of thrust faults in southeast Arizona raises the possibility of a latest Cretaceous−Eocene retroarc orogenic wedge that linked the Sevier and Mexican thrust belts to the north and south, respectively. Basement-involved deformation does not rule out the presence of a retroarc wedge, and many Cordilleran orogenic systems include basement-involved thrusting.more » « less
An official website of the United States government

