skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Traces, high powers and one level density for families of curves over finite fields
Abstract The zeta function of a curve C over a finite field may be expressed in terms of the characteristic polynomial of a unitary matrix Θ C . We develop and present a new technique to compute the expected value of tr(Θ C n ) for various moduli spaces of curves of genus g over a fixed finite field in the limit as g is large, generalising and extending the work of Rudnick [ Rud10 ] and Chinis [ Chi16 ]. This is achieved by using function field zeta functions, explicit formulae, and the densities of prime polynomials with prescribed ramification types at certain places as given in [ BDF + 16 ] and [ Zha ]. We extend [ BDF + 16 ] by describing explicit dependence on the place and give an explicit proof of the Lindelöf bound for function field Dirichlet L -functions L (1/2 + it , χ). As applications, we compute the one-level density for hyperelliptic curves, cyclic ℓ-covers, and cubic non-Galois covers.  more » « less
Award ID(s):
1439786
PAR ID:
10302687
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Mathematical Proceedings of the Cambridge Philosophical Society
Volume:
165
Issue:
2
ISSN:
0305-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We study the extent to which curves over finite fields are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose C and C ′ are curves over a finite field K, with K-rational base points P and P ′ , and let D and D ′ be the pullbacks (via the Abel–Jacobi map) of the multiplication-by-2 maps on their Jacobians. We say that (C, P) and (C ′ , P ′ ) are doubly isogenous if Jac(C) and Jac(C ′ ) are isogenous over K and Jac(D) and Jac(D ′ ) are isogenous over K. For curves of genus 2 whose automorphism groups contain the dihedral group of order eight, we show that the number of pairs of doubly isogenous curves is larger than na¨ıve heuristics predict, and we provide an explanation for this phenomenon. 
    more » « less
  2. We define an enrichment of the logarithmic derivative of the zeta function of a variety over a finite field to a power series with coefficients in the Grothendieck–Witt group. We show that this enrichment is related to the topology of the real points of a lift. For cellular schemes over a field, we prove a rationality result for this enriched logarithmic derivative of the zeta function as an analogue of part of the Weil conjectures. We also compute several examples, including toric varieties, and show that the enrichment is a motivic measure. 
    more » « less
  3. Abstract Consider the algebraic function $$\Phi _{g,n}$$ that assigns to a general $$g$$ -dimensional abelian variety an $$n$$ -torsion point. A question first posed by Klein asks: What is the minimal $$d$$ such that, after a rational change of variables, the function $$\Phi _{g,n}$$ can be written as an algebraic function of $$d$$ variables? Using techniques from the deformation theory of $$p$$ -divisible groups and finite flat group schemes, we answer this question by computing the essential dimension and $$p$$ -dimension of congruence covers of the moduli space of principally polarized abelian varieties. We apply this result to compute the essential $$p$$ -dimension of congruence covers of the moduli space of genus $$g$$ curves, as well as its hyperelliptic locus, and of certain locally symmetric varieties. These results include cases where the locally symmetric variety $$M$$ is proper . As far as we know, these are the first examples of nontrivial lower bounds on the essential dimension of an unramified, nonabelian covering of a proper algebraic variety. 
    more » « less
  4. Abstract We compute moments of L-functions associated to the polynomial family of Artin–Schreier covers over $$\mathbb{F}_q$$, where q is a power of a prime p > 2, when the size of the finite field is fixed and the genus of the family goes to infinity. More specifically, we compute the $$k{\text{th}}$$ moment for a large range of values of k, depending on the sizes of p and q. We also compute the second moment in absolute value of the polynomial family, obtaining an exact formula with a lower order term, and confirming the unitary symmetry type of the family. 
    more » « less
  5. null (Ed.)
    Following a suggestion of Peter Scholze, we construct an action of G m ^ \widehat {\mathbb {G}_m} on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the p p -adic modular curve whose ring of functions is Serre’s space of p p -adic modular functions. This action is a local, p p -adic analog of a global, archimedean action of the circle group S 1 S^1 on the lattice-unstable locus of the modular curve over C \mathbb {C} . To construct the G m ^ \widehat {\mathbb {G}_m} -action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates q q ; along the way we also prove a natural generalization of Dwork’s equation τ = log ⁡ q \tau =\log q for extensions of Q p / Z p \mathbb {Q}_p/\mathbb {Z}_p by μ p ∞ \mu _{p^\infty } valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of G m ^ \widehat {\mathbb {G}_m} integrates the differential operator θ \theta coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and p p -adic L L -functions. 
    more » « less