skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concentration of Maxima and Fundamental Limits in High-Dimensional Testing and Inference
This book provides a unified exposition of some fundamental theoretical problems in high-dimensional statistics. It specifically considers the canonical problems of detection and support estimation for sparse signals observed with noise. Novel phase-transition results are obtained for the signal support estimation problem under a variety of statistical risks. Based on a surprising connection to a concentration of maxima probabilistic phenomenon, the authors obtain a complete characterization of the exact support recovery problem for thresholding estimators under dependent errors.  more » « less
Award ID(s):
1830293
PAR ID:
10302864
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SpringerBriefs in probability and mathematical statistics
ISSN:
2365-4333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper highlights a tension between semiparametric efficiency and bootstrap consistency in the context of a canonical semiparametric estimation problem, namely the problem of estimating the average density. It is shown that although simple plug-in estimators suffer from bias problems preventing them from achieving semiparametric efficiency under minimal smoothness conditions, the nonparametric bootstrap automatically corrects for this bias and that, as a result, these seemingly inferior estimators achieve bootstrap consistency under minimal smoothness conditions. In contrast, several “debiased” estimators that achieve semiparametric efficiency under minimal smoothness conditions do not achieve bootstrap consistency under those same conditions. 
    more » « less
  2. We consider the problem of decomposing a higher-order tensor with binary entries. Such data problems arise frequently in applications such as neuroimaging, recommendation system, topic modeling, and sensor network localization. We propose a multilinear Bernoulli model, develop a rank-constrained likelihood-based estimation method, and obtain the theoretical accuracy guarantees. In contrast to continuous-valued problems, the binary tensor problem exhibits an interesting phase transition phenomenon according to the signal-to-noise ratio. The error bound for the parameter tensor estimation is established, and we show that the obtained rate is minimax optimal under the considered model. Furthermore, we develop an alternating optimization algorithm with convergence guarantees. The efficacy of our approach is demonstrated through both simulations and analyses of multiple data sets on the tasks of tensor completion and clustering. 
    more » « less
  3. null (Ed.)
    Driven by a wide range of applications, several principal subspace estimation problems have been studied individually under different structural constraints. This paper presents a uni- fied framework for the statistical analysis of a general structured principal subspace estima- tion problem which includes as special cases sparse PCA/SVD, non-negative PCA/SVD, subspace constrained PCA/SVD, and spectral clustering. General minimax lower and up- per bounds are established to characterize the interplay between the information-geometric complexity of the constraint set for the principal subspaces, the signal-to-noise ratio (SNR), and the dimensionality. The results yield interesting phase transition phenomena concern- ing the rates of convergence as a function of the SNRs and the fundamental limit for consistent estimation. Applying the general results to the specific settings yields the mini- max rates of convergence for those problems, including the previous unknown optimal rates for sparse SVD, non-negative PCA/SVD and subspace constrained PCA/SVD. 
    more » « less
  4. Abstract This paper is motivated by studying differential brain activities to multiple experimental condition presentations in intracranial electroencephalography (iEEG) experiments. Contrasting effects of experimental conditions are often zero in most regions and nonzero in some local regions, yielding locally sparse functions. Such studies are essentially a function-on-scalar regression problem, with interest being focused not only on estimating nonparametric functions but also on recovering the function supports. We propose a weighted group bridge approach for simultaneous function estimation and support recovery in function-on-scalar mixed effect models, while accounting for heterogeneity present in functional data. We use B-splines to transform sparsity of functions to its sparse vector counterpart of increasing dimension, and propose a fast nonconvex optimization algorithm using nested alternative direction method of multipliers (ADMM) for estimation. Large sample properties are established. In particular, we show that the estimated coefficient functions are rate optimal in the minimax sense under the L2 norm and resemble a phase transition phenomenon. For support estimation, we derive a convergence rate under the norm that leads to a selection consistency property under δ-sparsity, and obtain a result under strict sparsity using a simple sufficient regularity condition. An adjusted extended Bayesian information criterion is proposed for parameter tuning. The developed method is illustrated through simulations and an application to a novel iEEG data set to study multisensory integration. 
    more » « less
  5. Abstract Robust estimation is an important problem in statistics which aims at providing a reasonable estimator when the data-generating distribution lies within an appropriately defined ball around an uncontaminated distribution. Although minimax rates of estimation have been established in recent years, many existing robust estimators with provably optimal convergence rates are also computationally intractable. In this paper, we study several estimation problems under a Wasserstein contamination model and present computationally tractable estimators motivated by generative adversarial networks (GANs). Specifically, we analyze the properties of Wasserstein GAN-based estimators for location estimation, covariance matrix estimation and linear regression and show that our proposed estimators are minimax optimal in many scenarios. Finally, we present numerical results which demonstrate the effectiveness of our estimators. 
    more » « less