Many studies have used time series of satellite-derived vegetation indices to identify so-called greening and browning trends across the northern high-latitudes and to suggest that the productivity of Arctic-Boreal ecosystems is changing in response to climate forcing at local and continental scales. However, disturbances that alter land cover are prevalent in Arctic-Boreal ecosystems, and changes in Arctic-Boreal land cover, which complicate interpretation of trends in vegetation indices, have mostly been ignored in previous studies. Here we use a new land cover change dataset derived from Landsat imagery to explore the extent to which land cover and land cover change influence trends in the normalized difference vegetation index (NDVI) over a large (3.76 M km2) area of NASA’s Arctic Boreal Vulnerability Experiment, which spans much of northwestern Canada and Alaska. Between 1984 and 2012, 21.2% of the study domain experienced land cover change and 42.7% had significant NDVI trends. Land cover change occurred in 27.6% of locations with significant NDVI trends during this period and resulted in greening and browning rates 48%–128% higher than in areas of stable land cover. While the majority of land cover change areas experienced significant NDVI trends, more than half of areas with stable land cover did not. Further, the extent and magnitude of browning and greening trends varied substantially as a function of land cover class and land cover change type. Forest disturbance from fire and timber harvest drove over one third of statistically significant NDVI trends and created complex mosaics of recent forest loss (as browning) and post-disturbance recovery (as greening) at both landscape and continental scale. Our results demonstrate the importance of land cover changes in highly disturbed high-latitude ecosystems for interpreting trends of NDVI and productivity across multiple spatial scales.
- Award ID(s):
- 1442451
- NSF-PAR ID:
- 10302874
- Publisher / Repository:
- U.S. Geological Survey
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract. Methane (CH4) emissions from the boreal and arcticregion are globally significant and highly sensitive to climate change.There is currently a wide range in estimates of high-latitude annualCH4 fluxes, where estimates based on land cover inventories andempirical CH4 flux data or process models (bottom-up approaches)generally are greater than atmospheric inversions (top-down approaches). Alimitation of bottom-up approaches has been the lack of harmonizationbetween inventories of site-level CH4 flux data and the land coverclasses present in high-latitude spatial datasets. Here we present acomprehensive dataset of small-scale, surface CH4 flux data from 540terrestrial sites (wetland and non-wetland) and 1247 aquatic sites (lakesand ponds), compiled from 189 studies. The Boreal–Arctic Wetland and LakeMethane Dataset (BAWLD-CH4) was constructed in parallel with acompatible land cover dataset, sharing the same land cover classes to enablerefined bottom-up assessments. BAWLD-CH4 includes information onsite-level CH4 fluxes but also on study design (measurement method,timing, and frequency) and site characteristics (vegetation, climate,hydrology, soil, and sediment types, permafrost conditions, lake size anddepth, and our determination of land cover class). The different land coverclasses had distinct CH4 fluxes, resulting from definitions that wereeither based on or co-varied with key environmental controls. Fluxes ofCH4 from terrestrial ecosystems were primarily influenced by watertable position, soil temperature, and vegetation composition, while CH4fluxes from aquatic ecosystems were primarily influenced by watertemperature, lake size, and lake genesis. Models could explain more of thebetween-site variability in CH4 fluxes for terrestrial than aquaticecosystems, likely due to both less precise assessments of lake CH4fluxes and fewer consistently reported lake site characteristics. Analysisof BAWLD-CH4 identified both land cover classes and regions within theboreal and arctic domain, where future studies should be focused, alongsidemethodological approaches. Overall, BAWLD-CH4 provides a comprehensivedataset of CH4 emissions from high-latitude ecosystems that are usefulfor identifying research opportunities, for comparison against new fielddata, and model parameterization or validation. BAWLD-CH4 can bedownloaded from https://doi.org/10.18739/A2DN3ZX1R (Kuhn et al., 2021).more » « less
-
The quantification of impervious surface through remote sensing provides critical information for urban planning and environmental management. The acquisition of quality reference data and the selection of effective predictor variables are two factors that contribute to the low accuracies of impervious surface in urban remote sensing. A hybrid method was developed to improve the extraction of impervious surface from high-resolution aerial imagery. This method integrates ancillary datasets from OpenStreetMap, National Wetland Inventory, and National Cropland Data to generate training and validation samples in a semi-automatic manner, significantly reducing the effort of visual interpretation and manual labeling. Satellite-derived surface reflectance stability is incorporated to improve the separation of impervious surface from other land cover classes. This method was applied to 1-m National Agriculture Imagery Program (NAIP) imagery of three sites with different levels of land development and data availability. Results indicate improved extractions of impervious surface with user’s accuracies ranging from 69% to 90% and producer’s accuracies from 88% to 95%. The results were compared to the 30-m percent impervious surface data of the National Land Cover Database, demonstrating the potential of this method to validate and complement satellite-derived medium-resolution datasets of urban land cover and land use.more » « less
-
The National Land Cover Dataset was compiled from Landsat satellite TM imagery (circa 1992) with a spatial resolution of 30 meters and supplemented by various ancillary data (where available). The analysis and interpretation of the satellite imagery was conducted using very large, sometimes multi-state image mosaics (i.e. up to 18 Landsat scenes). Using a relatively small number of aerial photographs for 'ground truth', the thematic interpretations were necessarily conducted from a spatially-broad perspective. Furthermore, the accuracy assessments (see below) correspond to 'federal regions' which are groupings of contiguous states. Thus, the reliability of the data is greatest at the state or multi-State level. The statistical accuracy of the data is known only for the region. Important Caution Advisory With this in mind, users are cautioned to carefully scrutinize the data to see if they are of sufficient reliability before attempting to use the dataset for larger-scale or local analyses. This evaluation must be made remembering that the NLCD represents conditions in the early 1990s. The New Hampshire portion of the NLCD was created as part of land cover mapping activities for Federal Region I that includes the States of Connecticut, Maine, Vermont, Rhode Island, New Hampshire, and Massachusetts. The NLCD classification contains 21 different land cover categories with a spatial resolution of 30 meters. The NLCD was produced as a cooperative effort between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (USEPA) to produce a consistent, land cover data layer for the conterminous U.S. using early 1990s Landsat thematic mapper (TM) data purchased by the Multi-resolution Land Characterization (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies that produce or use land cover data. Partners include the USGS (National Mapping, Biological Resources, and Water Resources Divisions), USEPA, the U.S. Forest Service, and the National Oceanic and Atmospheric Administration. The original NLCD grid was projected into UTM Zone 19 and was clipped to a box surrounding the USDA Forest Service, Hubbard Brook Experimental Forest.more » « less
-
Abstract Earth systems models require gridded land surface properties to compute fluxes of water, energy, and carbon within the landscape and to the atmosphere. However, most parameter sets contain time-invariant properties despite their known variability. Here we present new MODerate Resolution Imaging Spectroradiometer (MODIS)-based land surface parameters (MOD-LSP) formatted for the Variable Infiltration Capacity (VIC) hydrologic model that account for seasonal and interannual variability and longer-term change over the continental United States, Mexico, and southern Canada at 0.0625° spatial resolution and monthly temporal resolution. MOD-LSP improves over previously-available parameter sets via: (1) land cover maps of higher native spatial resolution; (2) multiple versions corresponding to the land cover of years 1992, 2001, and 2011; (3) spatially-explicit mean annual cycles of land surface properties, including leaf area index, canopy fraction, and albedo, derived from 17 years of observations; and (4) additional 17-year time series of these properties. The MOD-LSP parameters are useful as inputs to the VIC model, as an example land surface scheme, to assess the hydrologic impacts of land cover change from interannual to decadal scales; and as stand-alone datasets characterizing the temporal variability of these properties as a function of land cover class.