skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: Resident Perceptions of Mosquito Problems Are More Influenced by Landscape Factors than Mosquito Abundance
Mosquitoes and the pathogens they carry are increasingly common in urban areas throughout the globe. With urban landscapes, the need to manage mosquitoes is driven by the health risks and nuisance complaints associated with mosquitoes. Controlling the number of mosquitoes may reduce the overall risk of disease transmission but may not reduce nuisance complaints. This study focuses on Maricopa County in Arizona, USA, to investigate the relationship between mosquito abundance and landscape-level and sociodemographic factors on resident perceptions of mosquitoes. We used boosted regression trees to compare how mosquito abundance, collected from Maricopa Vector Control, and landscape factors and social factors, assessed through the Phoenix Area Social Survey, influence survey respondents’ reporting of mosquitoes as a problem. Results show that the landscape and sociodemographic features play a prominent role in how individuals perceive mosquitoes as a problem; specifically, respondents’ perception of their local landscape as messy and the distance to landscape features such as wetlands have more substantial roles in shaping perceptions. This work can highlight how potential mosquito and non-mosquito-related communications and management efforts may improve residents’ satisfaction with mosquito control or other wildlife management efforts, which can help inform best practices for vector control agencies.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mosquitoes are a complex nuisance around the world and tropical countries bear the brunt of the burden of mosquito-borne diseases. Rwanda has had success in reducing malaria and some arboviral diseases over the last few years, but still faces challenges to elimination. By building our understanding of in situ mosquito communities in Rwanda at a disturbed, human-occupied site and at a natural, preserved site, we can build our understanding of natural mosquito microbiomes toward the goal of implementing novel microbial control methods. Here, we examined the composition of collected mosquitoes and their microbiomes at two diverse sites using Cytochrome c Oxidase I sequencing and 16S V4 high-throughput sequencing. The majority (36 of 40 species) of mosquitoes captured and characterized in this study are the first-known record of their species for Rwanda but have been characterized in other nations in East Africa. We found significant differences among mosquito genera and among species, but not between mosquito sexes or catch method. Bacteria of interest for arbovirus control,Asaia,Serratia, andWolbachia, were found in abundance at both sites and varied greatly by species.

    more » « less
  2. Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term “vector competence” describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.

    more » « less
  3. null (Ed.)
    Abstract Urban rats are widely distributed pests that have negative effects on public health and property. It is crucial to understand their distribution to inform control efforts and address drivers of rat presence. Analysing public rat complaints can help assess urban rat distribution and identify factors supporting rat populations. Both social and environmental factors could promote rat complaints and must be integrated to understand rat distributions. We analysed rat complaints made between 2011 and 2017 in Chicago, a city with growing rat problems and stark wealth inequality. We examined whether rat complaints at the census tract level are associated with factors that could influence rat abundance, rats’ visibility to humans, and the likelihood of people making a complaint. Complaints were significantly positively correlated with anthropogenic factors hypothesized to promote rat abundance (restaurants, older buildings, garbage complaints, and dog waste complaints) or rat visibility (building construction/demolition activity), and factors hypothesized to increase the likelihood of complaining (human population density, more owner-occupied homes); we also found that complaints were highest in the summer. Our results suggest that conflicts between residents and rats are mainly driven by seasonal variation in rat abundance and human activity and could be mitigated with strategies such as securing food waste from residential and commercial sources. Accounting for social factors such as population density, construction and demolition activity, and home ownership versus rental can also help cities more accurately predict blocks at higher risk of rat conflicts. 
    more » « less
  4. ABSTRACT Mosquito surveillance is critical to reduce the risk of West Nile virus (WNV) transmission to humans. In response to surveillance indicators such as elevated mosquito abundance or increased WNV levels, many mosquito control programs will perform truck-mounted ultra-low volume (ULV) adulticide application to reduce the number of mosquitoes and associated virus transmission. Despite the common use of truck-based ULV adulticiding as a public health measure to reduce WNV prevalence, limited evidence exists to support a role in reducing viral transmission to humans. We use a generalized additive and fused ridge regression model to quantify the location-specific impact of truck-mounted ULV adulticide spray efforts from 2010 to 2018 in the North Shore Mosquito Abatement District (NSMAD) in metropolitan Chicago, IL, on commonly assessed risk factors from NSMAD surveillance gravid traps: Culex abundance, infection rate, and vector index. Our model also takes into account environmental variables commonly associated with WNV, including temperature, precipitation, wind speed, location, and week of year. Since it is unlikely ULV adulticide spraying will have the same impact at each trap location, we use a spatially varying spray effect with a fused ridge penalty to determine how the effect varies by trap location. We found that ULV adulticide spraying has an immediate temporary reduction in abundance followed by an increase after 5 days. It is estimated that mosquito abundance increased more in sprayed areas than if left unsprayed in all but 3 trap locations. The impact on infection rate and vector index were inconclusive due to the large error associated with estimating trap-specific infection rates. 
    more » « less
  5. The role of climate factors on transmission of mosquito-borne infections within urban landscapes must be considered in the context of the pronounced spatial heterogeneity of such environments. Socio-demographic and environmental variation challenge control efforts for emergent arboviruses transmitted via the urban mosquitoAedes aegypti. We address at high resolution, the spatial heterogeneity of dengue transmission risk in the megacity of Delhi, India, as a function of both temperature and the carrying-capacity of the human environment for the mosquito. Based on previous results predicting maximum mosquitoes per human for different socio-economic typologies, and on remote sensing temperature data, we produce a map of the reproductive number of dengue at a resolution of 250m by 250m. We focus on dengue risk hotspots during inter-epidemic periods, places where chains of transmission can persist for longer. We assess the resulting high-resolution risk map of dengue with reported cases for three consecutive boreal winters. We find that both temperature and vector carrying-capacity per human co-vary in space because of their respective dependence on population density. The synergistic action of these two factors results in larger variation of dengue’s reproductive number than when considered separately, with poor and dense locations experiencing the warmest conditions and becoming the most likely reservoirs off-season. The location of observed winter cases is accurately predicted for different risk threshold criteria. Results underscore the inequity of risk across a complex urban landscape, whereby individuals in dense poor neighborhoods face the compounded effect of higher temperatures and mosquito carrying capacity. Targeting chains of transmission in inter-epidemic periods at these locations should be a priority of control efforts. A better mapping is needed of the interplay between climate factors that are dominant determinants of the seasonality of vector-borne infections and the socio-economic conditions behind unequal exposure.

    more » « less