skip to main content


Title: Bird-feeder cleaning lowers disease severity in rural but not urban birds
Abstract Animals inhabiting urban areas often experience elevated disease threats, putatively due to factors such as increased population density and horizontal transmission or decreased immunity (e.g. due to nutrition, pollution, stress). However, for animals that take advantage of human food subsidies, like feeder-visiting birds, an additional mechanism may include exposure to contaminated feeders as fomites. There are some published associations between bird feeder presence/density and avian disease, but to date no experimental study has tested the hypothesis that feeder contamination can directly impact disease status of visiting birds, especially in relation to the population of origin (i.e. urban v. rural, where feeder use/densities naturally vary dramatically). Here we used a field, feeder-cleaning experimental design to show that rural, but not urban, house finches ( Haemorhous mexicanus ) showed increased infection from a common coccidian endoparasite ( Isospora spp.) when feeders were left uncleaned and that daily cleaning (with diluted bleach solution) over a 5-week period successfully decreased parasite burden. Moreover, this pattern in rural finches was true for males but not females. These experimental results reveal habitat- and sex-specific harmful effects of bird feeder use (i.e. when uncleaned in rural areas). Our study is the first to directly indicate to humans who maintain feeders for granivorous birds that routine cleaning can be critical for ensuring the health and viability of visiting avian species.  more » « less
Award ID(s):
1832016
NSF-PAR ID:
10302905
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Provisioning of wildlife, such as backyard bird feeding, can alter animal behavior and ecology in diverse ways. For species that are highly dependent on supplemental resources, it is critical to understand how variation in the degree of provisioning, as occurs naturally across backyards, alters wildlife behavior and ecology in ways potentially relevant to disease spread. We experimentally manipulated feeder density at suburban sites and tracked local abundance, foraging behaviors, body mass, and movement in House Finches (Haemorhous mexicanus (P.L. Statius Müller, 1776)), the primary host of a pathogen commonly spread at feeders. Sites with high feeder density harbored higher local House Finch abundance, and birds at these sites had longer feeding bouts and total time on feeders relative to sites with low feeder density. House Finches at high-density feeder sites had lower residual body mass despite greater apparent feeder access. Finally, birds first recorded at low-density feeder sites were more likely to move to neighboring high-density feeder sites than vice versa. Because local abundance and time spent on feeders have both been linked with disease risk in this species, the effects of heterogeneity in bird feeder density on these traits may have important consequences for disease dynamics in this system and more broadly. 
    more » « less
  2. Abstract

    Animal behaviors are often modified in urban settings due to changes in species assemblages and interactions. The ability of prey to respond to a predator is a critical behavior, but urban populations may experience altered predation pressure, food supplementation, and other human‐mediated disturbances that modify their responsiveness to predation risk and promote habituation.

    Citizen‐science programs generally focus on the collection and analysis of observational data (e.g., bird checklists), but there has been increasing interest in the engagement of citizen scientists for ecological experimentation.

    Our goal was to implement a behavioral experiment in which citizen scientists recorded antipredator behaviors in wild birds occupying urban areas. In North America, increasing populations ofAccipiterhawks have colonized suburban and urban areas and regularly prey upon birds that frequent backyard bird feeders. This scenario, of an increasingly common avian predator hunting birds near human dwellings, offers a unique opportunity to characterize antipredator behaviors within urban passerines.

    For two winters, we engaged citizen scientists in Chicago, IL, USA to deploy a playback experiment and record antipredator behaviors in backyard birds. If backyard birds maintained their antipredator behaviors, we hypothesized that birds would decrease foraging behaviors and increase vigilance in response to a predator cue (hawk playback) but that these responses would be mediated by flock size, presence of sentinel species, body size, tree cover, and amount of surrounding urban area.

    Using a randomized control–treatment design, citizen scientists at 15 sites recorded behaviors from 3891 individual birds representing 22 species. Birds were more vigilant and foraged less during the playback of a hawk call, and these responses were strongest for individuals within larger flocks and weakest in larger‐bodied birds. We did not find effects of sentinel species, tree cover, or urbanization.

    By deploying a behavioral experiment, we found that backyard birds inhabiting urban landscapes largely maintained antipredator behaviors of increased vigilance and decreased foraging in response to predator cues. Experimentation in citizen science poses challenges (e.g., observation bias, sample size limitations, and reduced complexity in protocol design), but unlike programs focused solely on observational data, experimentation allows researchers to disentangle the complex factors underlying animal behavior and species interactions.

     
    more » « less
  3. Abstract

    Interactions between hosts and pathogens are dynamic at both ecological and evolutionary levels. In the resultant ‘eco‐evolutionary dynamics’ ecological and evolutionary processes affect each other. For example, the house finchHaemorhous mexicanusand its recently emerged pathogen, the bacteriumMycoplasma gallisepticum, form a system in which evidence suggests that changes in bacterial virulence through time enhance levels of host immunity in ways that drive the evolution of virulence in an arms race.

    We use data from two associated citizen science projects in order to determine whether this arms race has had any detectable effect at the population level in the north‐eastern United States.

    We used data from two citizen science projects, based on observations of birds at bird feeders, which provide information on the long‐term changes in sizes of aggregations of house finches (host population density), and the probabilities that these house finches have observable disease (disease prevalence).

    The initial emergence ofM. gallisepticumcaused a rapid halving of house finch densities; this was then followed by house finch populations remaining stable or slowly declining. Disease prevalence also decreased sharply after the initial emergence and has remained low, although with fluctuations through time. Surprisingly, while initially higher local disease prevalence was found at sites with higher local densities of finches, this relationship has reversed over time.

    The ability of a vertebrate host species, with a generation time of at least 1 year, to maintain stable populations in the face of evolved higher virulence of a bacterium, with generation times measurable in minutes, suggests that genetic changes in the host are insufficient to explain the observed population‐level patterns. We suggest that acquired immunity plays an important role in the observed interaction between house finches andM. gallisepticum.

     
    more » « less
  4. Abstract

    Supplemental feeding of wild animal populations is popular across many areas of the world and has long been considered beneficial, especially to avian taxa. Over 4 billion dollars are spent by hobby bird feeders in the United States each year alone. However, there is mixed evidence whether wildlife feeding is beneficial, including when it is implemented as a conservation management tool, a targeted experimental design, or an avocation. Much of the current evidence suggests that providing supplemental food is advantageous to the reproductive output and general survival of focal taxa. However, many of these studies are limited in scope and duration, leaving possible negative impacts unaddressed. This is particularly true regarding passive backyard feeding, which describes the majority of supplemental feeding, including the immense effort of millions of public enthusiasts. Here we show that winter supplemental feeding prior to reproduction had no significant impact on a range of reproductive parameters in a resident, montane passerine species, the Mountain Chickadee (Poecile gambeli). This population resides in an intact natural environment with no exposure to supplemental food beyond our experimental treatments, and individual birds were tracked across six years using radio frequency identification technology. Our results add to the growing evidence that supplemental feeding alone, isolated from the effects of urban environments, may have little to no impact on the population dynamics of some avian taxa.

     
    more » « less
  5. Abstract

    The introduction of nonnative species and reductions in native biodiversity have resulted in substantial changes in vector and host communities globally, but the consequences for pathogen transmission are poorly understood. In lowland Hawaii, bird communities are composed of primarily introduced species, with scattered populations of abundant native species. We examined the influence of avian host community composition, specifically the role of native and introduced species, as well as host diversity, on the prevalence of avian malaria (Plasmodium relictum) in the southern house mosquito (Culex quinquefasciatus). We also explored the reciprocal effect of malaria transmission on native host populations and demography. Avian malaria infection prevalence in mosquitoes increased with the density and relative abundance of native birds, as well as host community competence, but was uncorrelated with host diversity. Avian malaria transmission was estimated to reduce population growth rates of Hawai‘i ʻamakihi (Chlorodrepanis virens) by 7–14%, but mortality from malaria could not explain gaps in this species’ distribution at our sites. Our results suggest that, in Hawaii, native host species increase pathogen transmission to mosquitoes, but introduced species can also support malaria transmission alone. The increase in pathogen transmission with native bird abundance leads to additional disease mortality in native birds, further increasing disease impacts in an ecological feedback cycle. In addition, vector abundance was higher at sites without native birds and this overwhelmed the effects of host community composition on transmission such that infected mosquito abundance was highest at sites without native birds. Higher disease risk at these sites due to higher vector abundance could inhibit recolonization and recovery of native species to these areas. More broadly, this work shows how differences in host competence for a pathogen among native and introduced taxa can influence transmission and highlights the need to examine this question in other systems to determine the generality of this result.

     
    more » « less