skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Technoeconomic analysis of co-hydrothermal carbonization of coal waste and food waste
The aim of this research was to evaluate the technoeconomic prospect of hydrochar production through co-hydrothermal carbonization of coal waste (CW) and food waste (FW). A process flow diagram was developed that considered seven reactors, six pumps, and other necessary equipment for producing 49,192 kg/h hydrochar. Three different cases were considered for the economic analysis. Case II considered both CW and FW transportation cost while cases I and III considered only FW and only CW transportation, respectively. The economic analysis revealed the break-even costs to be $62.24 per ton for case I, $69.90 per ton for case II, and $60.26 per ton for case III. The fixed capital investment (FCI) was $11.4M for all the cases while total capital investment (TCI), working capital (WC), and manufacturing costs were higher for case II compared to cases I and III. A sensitivity analysis examined the effect of nine different variables on the break-even cost. The raw materials’ cost as well as their transportation costs significantly affected the corresponding break-even cost. Additionally, increasing the hydrochar production capacity has drastically decreased the break-even cost. However, the analysis also revealed that excessive increase of production capacity can have negative impact on the process economics.  more » « less
Award ID(s):
2123495
PAR ID:
10302959
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biomass Conversion and Biorefinery
ISSN:
2190-6815
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Contemporary food and agricultural systems degrade soils, pollute natural resources, and contribute to greenhouse gas emissions. The waste output from these systems, however, can be repurposed as an agricultural input, reducing emissions associated with organics disposal while actively sequestering atmospheric carbon in soils—thus transitioning the sector from a carbon source to a carbon sink. This research estimates the near-term technical and economic potential of utilizing composted organic feedstocks as a soil amendment to mitigate climate change and improve long-term soil quality, in line with California’s organics diversion policies, by connecting food scraps and organics residuals in California’s municipal solid waste to existing infrastructure and working lands in the state. The multi-objective spatial optimization results indicate considerable carbon sequestration benefits in the range of −1.9 ± 0.5 MMT CO2eq annually, by applying compost to 6 million hectares of California rangelands at a price of approximately $200 per ton, presenting a cost-effective climate change mitigation strategy within proposed federal sequestration credits. Expanding composting capacity is predicted to increase the total amount of carbon sequestered while reducing the cost per ton and per hectare treated. This model aids decision makers in considering the technical, economic, and institutional potential of actively managing the State’s organic materials in municipal waste streams for climate change mitigation. 
    more » « less
  2. Recycling underutilized resources from food waste (FW) to agriculture through hydrothermal carbonization (HTC) has been proposed to promote a circular economy (CE) in food-energy-water (FEW) nexus. However, most HTC studies on FW were conducted at laboratory scale, and little is known on the efficacy and feasibility of field application of HTC products from FW, i.e. the aqueous phrase (AP) and solid hydrochar (HC), to support agriculture production. An integrated pilot-scale HTC system was established to investigate practical HTC reaction conditions treating FW. A peak temperature of 180 ◦C at a residence time of 60 min with 3 times AP recirculation were recommended as optimal HTC conditions to achieve efficient recovery of nutrients, and desirable AP and HC properties for agriculture application. Dilution of the raw AP and composting of the fresh HC are necessary as post-treatments to eliminate potential phytotoxicity. Applying properly diluted AP and the composted HC significantly improved plant growth and nutrient availability in both greenhouse and field trials, which were comparable to commercial chemical fertilizer and soil amendment. The HTC of FW followed with agricultural application of the products yielded net negative carbon emission of 􀀀 0.28 t CO2e t􀀀 1, which was much lower than the other alternatives of FW treatments. Economic profit could be potentially achieved by valorization of the AP as liquid fertilizer and HC as soil amendment. Our study provides solid evidences demonstrating the technical and economic feasibility of recycling FW to agriculture through HTC as a promising CE strategy to sustain the FEW nexus. 
    more » « less
  3. Recycling underutilized resources from food waste (FW) to agriculture through hydrothermal carbonization (HTC) has been proposed to promote a circular economy (CE) in food-energy-water (FEW) nexus. However, most HTC studies on FW were conducted at laboratory scale, and little is known on the efficacy and feasibility of field application of HTC products from FW, i.e. the aqueous phrase (AP) and solid hydrochar (HC), to support agriculture production. An integrated pilot-scale HTC system was established to investigate practical HTC reaction conditions treating FW. A peak temperature of 180 ◦C at a residence time of 60 min with 3 times AP recirculation were recommended as optimal HTC conditions to achieve efficient recovery of nutrients, and desirable AP and HC properties for agriculture application. Dilution of the raw AP and composting of the fresh HC are necessary as post-treatments to eliminate potential phytotoxicity. Applying properly diluted AP and the composted HC significantly improved plant growth and nutrient availability in both greenhouse and field trials, which were comparable to commercial chemical fertilizer and soil amendment. The HTC of FW followed with agricultural application of the products yielded net negative carbon emission of 􀀀 0.28 t CO2e t􀀀 1, which was much lower than the other alternatives of FW treatments. Economic profit could be potentially achieved by valorization of the AP as liquid fertilizer and HC as soil amendment. Our study provides solid evidences demonstrating the technical and economic feasibility of recycling FW to agriculture through HTC as a promising CE strategy to sustain the FEW nexus. 
    more » « less
  4. ABSTRACT Globally, by 2030, it is estimated that about 2 billion tons of food waste will be generated. This will not only cause economic losses but will also lead to serious environmental issues such as the emission of greenhouse gases (GHGs), bad odor, and land pollution due to the decomposition of food waste in an open environment and landfills. It is imperative to develop novel solutions to reduce food waste and perhaps valorize it into a valuable product, thereby reducing its environmental and economic impacts. Food waste can be considered a renewable and sustainable feedstock that can be used for chemical and biological processing for its valorization. In this investigation, hydrochar is derived from the hydrothermal carbonization (HTC) of food waste and subjected to chemical activation with potassium hydroxide (KOH), followed by thermal treatment at 800°C to produce porous carbon (POC). As‐prepared POC is thoroughly characterized by Brunauer–Emmett–Teller (BET) surface area analyzer, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM/EDX), and transmission electron microscopy (TEM). A specific capacitance of 112 F/g at 0.5 A/g current density is observed for POC in the three‐cell standard electrochemical setup while asymmetric supercapacitor (ASC) fabricated with POC and Cu‐ferrite electrodes exhibited energy and power densities of 29 Wh/kg and 1.36 kW/kg, respectively. Preliminary cost analysis shows a significantly lower cost for the POC derived from food waste than for a few other biomass feedstocks. 
    more » « less
  5. There has been increasing interest in low-carbon technologies to reduce climate change impacts. However, careful assessments of their implications for the vibrancy of local economies are rare. This paper employs techno-economic analysis to assess the technical and economic feasibility of investment in one such technology: local green ammonia production and its contribution to the economic viability of the local economy. The analysis considers price projection and debt financing options, and alternative energy-to-ammonia technologies. The approach is broadly applicable and is illustrated here using a case study in which 248,188 MT of traditional ammonia are replaced with local wind energy-produced ammonia for farmers in Southwest Kansas, United States. Economic feasibility is defined as the ability to accrue enough discounted cash flow at the end of the turbines’ 25-year lifespan to enable their replacement. The alternative technologies are the traditional Haber-Bosch and the emerging solid oxide electrolysis cell (SOEC). The total plant capital cost amounted to $781.72 million while the plant operating costs were set at $100/MT with the energy supplied by the project’s energy system. The results show how economic feasibility sensitivity to technology and financing options are evaluated and communicated to scientists, policymakers, and farmers. The 6.5 MWh/MT wind energy-to-ammonia SOEC technology presented the best economic results under all price projections. The community’s investment yielded the highest return when debt was used to finance 50% of the capital investment. Returns exceeded the average annual S&P return of about 7% from 1957 to 2021. The work shows how consideration of technology efficiencies and creative financing strategies can contribute to the economic welfare of farmers and their communities even as they contributed to reducing crop production’s carbon footprint. 
    more » « less