skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Title: Quantification of the water-use reduction associated with the transition from coal to natural gas in the US electricity sector

The transition from coal to natural gas and renewables in the electricity sector and the rise of unconventional shale gas extraction are likely to affect water usage throughout the US. While new natural-gas power plants use less water than coal-fired power plants, shale gas extraction through hydraulic fracturing has increased water utilization and intensity. We integrated water and energy use data to quantify the intensity of water use in the US throughout the electricity’s lifecycle. We show that in spite of the rise of water use for hydraulic fracturing, during 2013–2016 the overall annual water withdrawal (8.74 × 1010m3) and consumption (1.75 × 109m3) for coal were larger than those of natural gas (4.55 × 1010m3, and 1.07 × 109m3, respectively). We find that during this period, for every MWh of electricity that has been generated with natural gas instead of coal, there has been a reduction of ∼1 m3in water consumption and ∼40 m3in water withdrawal. Examining plant locations spatially, we find that only a small proportion of net electricity generation takes place in water stressed areas, while a large proportion of both coal (37%) and natural gas (50%) are extracted in water stressed areas. We also show that the growing contribution of renewable energy technologies such as wind and solar will reduce water consumption at an even greater magnitude than the transition from coal to natural gas, eliminating much of water withdrawals and consumption for electricity generation in the US.

more » « less
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Page Range / eLocation ID:
Article No. 124028
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electricity consumption and greenhouse gas (GHG) emissions associated with wastewater flows from residential and commercial water use in three major cities of the United States are analyzed and compared for the period 2010–2018. Contributions of unit wastewater treatment processes and electricity sources to the overall emissions are considered. Tucson (Arizona), Denver (Colorado), and Washington, DC were chosen for their distinct locations, climatic conditions, raw water sources, wastewater treatment technologies, and electric power mixes. Denver experienced a 20% reduction in treated wastewater volumes per person despite a 16% increase in population. In Washington, DC, the reduction was 19%, corresponding to a 16% increase in population, and in Tucson 14% despite a population growth of 3%. The electricity intensity per volume of treated wastewater was higher in Tucson (1 kWh m−3) than in Washington, DC (0.7 kWh m−3) or Denver (0.5 kWh m−3). Tucson’s GHG emissions per person were about six times higher compared to Denver and four times higher compared to Washington, DC. Wastewater treatment facilities in Denver and Washington, DC generated a quarter to third of their electricity needs from onsite biogas and lowered their GHG emissions by offsetting purchases from the grid, including coal-generated electricity. The higher GHG emission intensity in Tucson is a reflection of coal majority in the electricity mix in the period, gradually replaced with natural gas, solar, and biogas. In 2018, the GHG reduction was 20% when the share of solar electricity increased to 14% from zero in 2016. In the analysis period, reduced wastewater volumes relative to the 2010 baseline saved Denver 44 000 MWh, Washington, DC 11 000 MWh and Tucson 7000 MWh of electricity. As a result, Washington, DC managed to forgo 21 000 metric tons of CO2-eqand Denver 34 000 metric tons, while Tucson’s cumulative emissions increased by 22 000 metric tons of CO2-eq. This study highlights the variability observed in water systems and the opportunities that exist with water savings to allow for wastewater generation reduction, recovering energy from onsite biogas, and using energy-efficient wastewater treatment technologies.

    more » « less
  2. Abstract

    Natural gas production in the United States has increased rapidly over the past decade, along with concerns about methane (CH4) fugitive emissions and its climate impacts. Quantification of CH4emissions from oil and natural gas (O&NG) operations is important for establishing scientifically sound policies for mitigating greenhouse gases. We use the aircraft mass balance approach for three flight experiments in August and September 2015 to estimate CH4emissions from O&NG operations over the southwestern Marcellus Shale. We estimate a mean CH4emission rate as 21.2 kg/s with 28% coming from O&NG operations. The mean CH4emission rate from O&NG operations was estimated to be 1.1% of total NG production. The individual best‐estimate emission rates from the three flight experiments ranged from 0.78 to 1.5%, with overall limits of 0% and 3.5%. These emission rates are at the low end of other top‐down studies, but consistent with the few observational studies in the Marcellus Shale region as well as the U.S. Environmental Protection Agency CH4inventory. A substantial source of CH4(~70% of observed CH4emissions) was found to contain little ethane, possibly due to coalbed CH4emitted either directly from coal mines or from wells drilled through coalbed layers in O&NG operations. Recent regulations requiring capture of gas from the completion‐venting step of hydraulic fracturing appear to have reduced the atmospheric release of CH4. Our study suggests that for a 20‐year time scale, energy derived from the combustion of natural gas extracted from this region likely exerts a net climate benefit compared to coal.

    more » « less
  3. Abstract

    The production of food, electricity, and treated water is often tracked and managed along political or infrastructure boundaries. Yet, water resources, a critical input in the production of these goods, are delineated along natural landscape features (i.e., watersheds). The boundary mismatch between water resources and the associated production of economic goods conceals hydrologic dependencies and vulnerabilities in the provisioning of Food‐Energy‐Water (FEW) resources. In this study, we pair economic, infrastructure, and hydrologic data to evaluate the production of food, electricity, and treated water within watersheds of the conterminous United States. The US FEW sectors produced 950 million tonnes of crops, 3,973 million MWh of electricity, and supplied water to 263 million people in 2017. FEW production consumed 128 km3of blue water (18%) and 583 km3of green water (82%). Watersheds in central and southern California, the Midwest, and the Southwest have the largest FEW blue water consumption and the greatest exposure to water stress. Nearly three‐fifths of FEW production occurs in regularly water‐stressed watersheds. FEW production in watersheds in the Great Plains and Midwest relies heavily on groundwater to buffer against intra‐ and inter‐annual streamflow variability, while surface reservoir storage buffers against water shortages in all watersheds. We show where FEW production may be susceptible to curtailments due to ongoing groundwater depletion or known infrastructure deficiencies. This study adds to our understanding of how a nation's water resources and associated infrastructure support economic activity, as well as areas where economic activity is exposed to hydrological and infrastructure risks.

    more » « less
  4. The amount of radon in natural gas varies with its source. Little has been published about the radon from shale gas to date, making estimates of its impact on radon‐induced lung cancer speculative. We measured radon in natural gas pipelines carrying gas from the Marcellus Shale in Pennsylvania and West Virginia. Radon concentrations ranged from 1,520 to 2,750 Bq/m3(41–74 pCi/L), and the throughput‐weighted average was 1,983 Bq/m3(54 pCi/L). Potential radon exposure due to the use of Marcellus Shale gas for cooking and space heating using vent‐free heaters or gas ranges in northeastern U.S. homes and apartments was assessed. Though the measured radon concentrations are higher than what has been previously reported, it is unlikely that exposure from natural gas cooking would exceed 1.2 Bq/m3(<1% of the U.S. Environmental Protection Agency's action level). Using worst‐case assumptions, we estimate the excess lifetime (70 years) lung cancer risk associated with cooking to be 1.8×10−4(interval spanning 95% of simulation results: 8.5×10−5, 3.4×10−4). The risk profile for supplemental heating with unvented gas appliances is similar. Individuals using unvented gas appliances to provide primary heating may face lifetime risks as high as 3.9×10−3. Under current housing stock and gas consumption assumptions, expected levels of residential radon exposure due to unvented combustion of Marcellus Shale natural gas in the Northeast United States do not result in a detectable change in the lung cancer death rates.

    more » « less
  5. Abstract

    Annual carbon dioxide (CO2) emissions from the U.S. power sector decreased 24% from 2000 to 2018, while carbon intensity (CO2per unit of electricity generated) declined by 34%. These reductions have been attributed in part to a shift from coal to natural gas, as gas‐fired plants emit roughly half the CO2emissions as coal plants. To date, no analysis has looked at the coal‐to‐gas shift from the perspective of commitment accounting—the cumulative future CO2emissions expected from power infrastructure. We estimate that between 2000 and 2018, committed emissions in the U.S. power sector decreased 12% (six GtCO2), from 49 to 43 GtCO2, assuming average generator lifetimes and capacity factors. Taking into consideration methane leakage during the life cycle of coal and gas plants, this decrease in committed emissions is further offset (e.g., assuming a 3% leakage rate, there is effectively no reduction at all). Thus, although annual emissions have fallen, cumulative future emissions will not be substantially lower unless existing coal and gas plants operate at significantly lower rates than they have historically. Moreover, our estimates of committed emissions for U.S. coal and gas plants finds steep reductions in plant use and/or early retirements are already needed for the country to meet its targets under the Paris climate agreement—even if no new fossil capacity is added.

    more » « less