skip to main content


Title: FaceSense: Sensing Face Touch with an Ear-worn System
Face touch is an unconscious human habit. Frequent touching of sensitive/mucosal facial zones (eyes, nose, and mouth) increases health risks by passing pathogens into the body and spreading diseases. Furthermore, accurate monitoring of face touch is critical for behavioral intervention. Existing monitoring systems only capture objects approaching the face, rather than detecting actual touches. As such, these systems are prone to false positives upon hand or object movement in proximity to one's face (e.g., picking up a phone). We present FaceSense, an ear-worn system capable of identifying actual touches and differentiating them between sensitive/mucosal areas from other facial areas. Following a multimodal approach, FaceSense integrates low-resolution thermal images and physiological signals. Thermal sensors sense the thermal infrared signal emitted by an approaching hand, while physiological sensors monitor impedance changes caused by skin deformation during a touch. Processed thermal and physiological signals are fed into a deep learning model (TouchNet) to detect touches and identify the facial zone of the touch. We fabricated prototypes using off-the-shelf hardware and conducted experiments with 14 participants while they perform various daily activities (e.g., drinking, talking). Results show a macro-F1-score of 83.4% for touch detection with leave-one-user-out cross-validation and a macro-F1-score of 90.1% for touch zone identification with a personalized model.  more » « less
Award ID(s):
1846541 2037267 2132112 2322879
NSF-PAR ID:
10303235
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
5
Issue:
3
ISSN:
2474-9567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis

    Every stage of organismal life history is being challenged by global warming. Many species are already experiencing temperatures approaching their physiological limits; this is particularly true for ectothermic species, such as lizards. Embryos are markedly sensitive to thermal insult. Here, we demonstrate that temperatures currently experienced in natural nesting areas can modify gene expression levels and induce neural and craniofacial malformations in embryos of the lizard Anolis sagrei. Developmental abnormalities ranged from minor changes in facial structure to significant disruption of anterior face and forebrain. The first several days of postoviposition development are particularly sensitive to this thermal insult. These results raise new concern over the viability of ectothermic species under contemporary climate change. Herein, we propose and test a novel developmental hypothesis that describes the cellular and developmental origins of those malformations: cell death in the developing forebrain and abnormal facial induction due to disrupted Hedgehog signaling. Based on similarities in the embryonic response to thermal stress among distantly related species, we propose that this developmental hypothesis represents a common embryonic response to thermal insult among amniote embryos. Our results emphasize the importance of adopting a broad, multidisciplinary approach that includes both lab and field perspectives when trying to understand the future impacts of anthropogenic change on animal development.

     
    more » « less
  2. Currently, many critical care indices are repetitively assessed and recorded by overburdened nurses, e.g. physical function or facial pain expressions of nonverbal patients. In addition, many essential information on patients and their environment are not captured at all, or are captured in a non-granular manner, e.g. sleep disturbance factors such as bright light, loud background noise, or excessive visitations. In this pilot study, we examined the feasibility of using pervasive sensing technology and artificial intelligence for autonomous and granular monitoring of critically ill patients and their environment in the Intensive Care Unit (ICU). As an exemplar prevalent condition, we also characterized delirious and non-delirious patients and their environment. We used wearable sensors, light and sound sensors, and a high-resolution camera to collected data on patients and their environment. We analyzed collected data using deep learning and statistical analysis. Our system performed face detection, face recognition, facial action unit detection, head pose detection, facial expression recognition, posture recognition, actigraphy analysis, sound pressure and light level detection, and visitation frequency detection. We were able to detect patient's face (Mean average precision (mAP)=0.94), recognize patient's face (mAP=0.80), and their postures (F1=0.94). We also found that all facial expressions, 11 activity features, visitation frequency during the day, visitation frequency during the night, light levels, and sound pressure levels during the night were significantly different between delirious and non-delirious patients (p-value<0.05). In summary, we showed that granular and autonomous monitoring of critically ill patients and their environment is feasible and can be used for characterizing critical care conditions and related environment factors. 
    more » « less
  3. Heating, ventilation and air-conditioning (HVAC) systems have been adopted to create comfortable, healthy and safe indoor environments. In the control loop, the technical feature of the human demand-oriented supply can help operate HVAC effectively. Among many technical options, real time monitoring based on feedback signals from end users has been frequently reported as a critical technology to confirm optimizing building performance. Recent studies have incorporated human thermal physiology signals and thermal comfort/discomfort status as real-time feedback signals. A series of human subject experiments used to be conducted by primarily adopting subjective questionnaire surveys in a lab-setting study, which is limited in the application for reality. With the help of advanced technologies, physiological signals have been detected, measured and processed by using multiple technical formats, such as wearable sensors. Nevertheless, they mostly require physical contacts with the skin surface in spite of the small physical dimension and compatibility with other wearable accessories, such as goggles, and intelligent bracelets. Most recently, a low cost small infrared camera has been adopted for monitoring human facial images, which could detect the facial skin temperature and blood perfusion in a contactless way. Also, according to latest pilot studies, a conventional digital camera can generate infrared images with the help of new methods, such as the Euler video magnification technology. Human thermal comfort/discomfort poses can also be detected by video methods without contacting human bodies and be analyzed by the skeleton keypoints model. In this review, new sensing technologies were summarized, their cons and pros were discussed, and extended applications for the demand-oriented ventilation were also reviewed as potential development and applications. 
    more » « less
  4. We show a new type of side-channel leakage in which the built-in magnetometer sensor in Apple's mobile devices captures touch events of users. When a conductive material such as the human body touches the mobile device screen, the electric current passes through the screen capacitors generating an electromagnetic field around the touch point. This electromagnetic field leads to a sharp fluctuation in the magnetometer signals when a touch occurs, both when the mobile device is stationary and held in hand naturally. These signals can be accessed by mobile applications running in the background without requiring any permissions. We develop iSTELAN, a three-stage attack, which exploits this side-channel to infer users' application and touch data. iSTELAN translates the magnetometer signals to a binary sequence to reveal users' touch events, exploits touch event patterns to fingerprint the type of application a user is using, and models touch events to identify users' touch event types performed on different applications. We demonstrate the iSTELAN attack on 22 users while using 7 popular app types and show that it achieves an average accuracy of 90% for disclosing touch events, 74% for classifying application type used, and 73% for detecting touch event types.

     
    more » « less
  5. Agaian, Sos S. ; Jassim, Sabah A. (Ed.)
    Face recognition technologies have been in high demand in the past few decades due to the increase in human-computer interactions. It is also one of the essential components in interpreting human emotions, intentions, facial expressions for smart environments. This non-intrusive biometric authentication system relies on identifying unique facial features and pairing alike structures for identification and recognition. Application areas of facial recognition systems include homeland and border security, identification for law enforcement, access control to secure networks, authentication for online banking and video surveillance. While it is easy for humans to recognize faces under varying illumination conditions, it is still a challenging task in computer vision. Non-uniform illumination and uncontrolled operating environments can impair the performance of visual-spectrum based recognition systems. To address these difficulties, a novel Anisotropic Gradient Facial Recognition (AGFR) system that is capable of autonomous thermal infrared to visible face recognition is proposed. The main contribution of this paper includes a framework for thermal/fused-thermal-visible to visible face recognition system and a novel human-visual-system inspired thermal-visible image fusion technique. Extensive computer simulations using CARL, IRIS, AT&T, Yale and Yale-B databases demonstrate the efficiency, accuracy, and robustness of the AGFR system. Keywords: Infrared thermal to visible facial recognition, anisotropic gradient, visible-to-visible face recognition, nonuniform illumination face recognition, thermal and visible face fusion method 
    more » « less