Abstract We definelazinessto describe a large suppression of variational parameter updates for neural networks, classical or quantum. In the quantum case, the suppression is exponential in the number of qubits for randomized variational quantum circuits. We discuss the difference between laziness andbarren plateauin quantum machine learning created by quantum physicists in McCleanet al(2018Nat. Commun.91–6) for the flatness of the loss function landscape during gradient descent. We address a novel theoretical understanding of those two phenomena in light of the theory of neural tangent kernels. For noiseless quantum circuits, without the measurement noise, the loss function landscape is complicated in the overparametrized regime with a large number of trainable variational angles. Instead, around a random starting point in optimization, there are large numbers of local minima that are good enough and could minimize the mean square loss function, where we still have quantum laziness, but we do not have barren plateaus. However, the complicated landscape is not visible within a limited number of iterations, and low precision in quantum control and quantum sensing. Moreover, we look at the effect of noises during optimization by assuming intuitive noise models, and show that variational quantum algorithms are noise-resilient in the overparametrization regime. Our work precisely reformulates the quantum barren plateau statement towards a precision statement and justifies the statement in certain noise models, injects new hope toward near-term variational quantum algorithms, and provides theoretical connections toward classical machine learning. Our paper provides conceptual perspectives about quantum barren plateaus, together with discussions about the gradient descent dynamics in Liuet al(2023Phys. Rev. Lett.130150601).
more »
« less
Driving quantum correlated atom-pairs from a Bose–Einstein condensate
Abstract The ability to cool quantum gases into the quantum degenerate realm has opened up possibilities for an extreme level of quantum-state control. In this paper, we investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose–Einstein condensate by the periodic modulation of the two-bodys-wave scattering length. This shows a capability to selectively amplify quantum fluctuations with a predetermined momentum, where the momentum value can be spectroscopically tuned. A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal in nonlinear optics. For this reason, it may be anticipated that the evolution will generate a ‘squeezed’ matter-wave state in the quasiparticle mode on resonance with the modulation frequency. Our model and analysis is motivated by a recent experiment by Clarket althat observed a time-of-flight pattern similar to an exploding firework (Clarket al2017Nature551356–9). Since the drive is a highly coherent process, we interpret the observed firework patterns as arising from a monotonic growth in the two-body correlation amplitude, so that the jets should contain correlated atom pairs with nearly equal and opposite momenta. We propose a potential future experiment based on applying Ramsey interferometry to experimentally probe these pair correlations.
more »
« less
- Award ID(s):
- 1734006
- PAR ID:
- 10303294
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- New Journal of Physics
- Volume:
- 22
- Issue:
- 3
- ISSN:
- 1367-2630
- Page Range / eLocation ID:
- Article No. 033010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Laser cooling is used to produce ultracold atoms and molecules for quantum science and precision measurement applications. Molecules are more challenging to cool than atoms due to their vibrational and rotational internal degrees of freedom. Molecular rotations lead to the use of type-II transitions ( ) for magneto-optical trapping (MOT). When typical red detuned light frequencies are applied to these transitions, sub-Doppler heating is induced, resulting in higher temperatures and larger molecular cloud sizes than realized with the type-I MOTs most often used with atoms. To improve type-II MOTs, Jarviset al(2018Phys. Rev. Lett.120083201) proposed a blue-detuned MOT to be applied after initial cooling and capture with a red-detuned MOT. This was successfully implemented (Burauet al2023Phys. Rev. Lett.130193401; Jorapuret al2024Phys. Rev. Lett.132163403; Liet al2024Phys. Rev. Lett.132233402), realizing colder and denser molecular samples. Very recently, Hallaset al(2024 arXiv:2404.03636) demonstrated a blue-detuned MOT with a ‘1+2’ configuration that resulted in even stronger compression of the molecular cloud. Here, we describe and characterize theoretically the conveyor-belt mechanism that underlies this observed enhanced compression. We perform numerical simulations of the conveyor-belt mechanism using both stochastic Schrödinger equation and optical Bloch equation approaches. We investigate the conveyor-belt MOT characteristics in relation to laser parameters,g-factors and the structure of the molecule, and find that conveyor-belt trapping should be applicable to a wide range of laser-coolable molecules.more » « less
-
Abstract The interplay of correlated spatial modulation and symmetry breaking leads to quantum critical phenomena intermediate between those of the clean and randomly disordered cases. By performing a detailed analytic and numerical case study of the quasi-periodically (QP) modulated transverse field Ising chain, we provide evidence for the conjectures of reference (Crowleyet al2018Phys. Rev. Lett.120175702) regarding the QP-Ising universality class. In the generic case, we confirm that the logarithmic wandering coefficientwgoverns both the macroscopic critical exponents and the energy-dependent localisation length of the critical excitations. However, for special values of the phase difference Δ between the exchange and transverse field couplings, the QP-Ising transition has different properties. For Δ = 0, a generalised Aubry–André duality prevents the finite energy excitations from localising despite the presence of logarithmic wandering. For Δ such that the fields and couplings are related by a lattice shift, the wandering coefficientwvanishes. Nonetheless, the presence of small couplings leads to non-trivial exponents and localised excitations. Our results add to the rich menagerie of quantum Ising transitions in the presence of spatial modulation.more » « less
-
Abstract To quantitatively convert upper mantle seismic wave speeds measured into temperature, density, composition, and corresponding and uncertainty, we introduce theWhole‐rockInterpretativeSeismicToolboxForUltramaficLithologies (WISTFUL). WISTFUL is underpinned by a database of 4,485 ultramafic whole‐rock compositions, their calculated mineral modes, elastic moduli, and seismic wave speeds over a range of pressure (P) and temperature (T) (P = 0.5–6 GPa,T = 200–1,600°C) using the Gibbs free energy minimization routine Perple_X. These data are interpreted with a toolbox of MATLAB® functions, scripts, and three general user interfaces:WISTFUL_relations, which plots relationships between calculated parameters and/or composition;WISTFUL_geotherms, which calculates seismic wave speeds along geotherms; andWISTFUL_inversion, which inverts seismic wave speeds for best‐fit temperature, composition, and density. To evaluate our methodology and quantify the forward calculation error, we estimate two dominant sources of uncertainty: (a) the predicted mineral modes and compositions, and (b) the elastic properties and mixing equations. To constrain the first source of uncertainty, we compiled 122 well‐studied ultramafic xenoliths with known whole‐rock compositions, mineral modes, and estimatedP‐Tconditions. We compared the observed mineral modes with modes predicted using five different thermodynamic solid solution models. The Holland et al. (2018,https://doi.org/10.1093/petrology/egy048) solution models best reproduce phase assemblages (∼12 vol. % phase root‐mean‐square error [RMSE]) and estimated wave speeds. To assess the second source of uncertainty, we compared wave speed measurements of 40 ultramafic rocks with calculated wave speeds, finding excellent agreement (VpRMSE = 0.11 km/s). WISTFUL easily analyzes seismic datasets, integrates into modeling, and acts as an educational tool.more » « less
-
Large ensembles of laser-cooled atoms interacting through infinite-range photon-mediated interactions are powerful platforms for quantum simulation and sensing. Here we realize momentum-exchange interactions in which pairs of atoms exchange their momentum states by collective emission and absorption of photons from a common cavity mode, a process equivalent to a spin-exchange or XX collective Heisenberg interaction. The momentum-exchange interaction leads to an observed all-to-all Ising-like interaction in a matter-wave interferometer. A many-body energy gap also emerges, effectively binding interferometer matter-wave packets together to suppress Doppler dephasing in analogy to Mössbauer spectroscopy. The tunable momentum-exchange interaction expands the capabilities of quantum interaction–enhanced matter-wave interferometry and may enable the realization of exotic behaviors, including simulations of superconductors and dynamical gauge fields.more » « less
An official website of the United States government
