Neutrons generated through charge-exchange9Be (p; ni)9Be reactions, with energies ranging from 0–33 MeV and an average energy of ∼9.8 MeV were used to irradiate conventional Schottky Ga2O3rectifiers and NiO/Ga2O3p-n heterojunction rectifiers to fluences of 1.1–2.2 × 1014cm−2. The breakdown voltage was improved after irradiation for the Schottky rectifiers but was highly degraded for their NiO/Ga2O3counterparts. This may be a result of extended defect zones within the NiO. After irradiation, the switching characteristics were degraded and irradiated samples of both types could not survive switching above 0.7 A or 400 V, whereas reference samples were robust to 1 A and 1 kV. The carrier removal rate in both types of devices was ∼45 cm−1. The forward currents and on-state resistances were only slightly degraded by neutron irradiation.
We report the effect of extended duration electron beam exposure on the minority carrier transport properties of 10 MeV proton irradiated (fluence ∼1014cm−2) Si-doped
- Award ID(s):
- 1802208
- NSF-PAR ID:
- 10303349
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- ECS Journal of Solid State Science and Technology
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2162-8769
- Page Range / eLocation ID:
- Article No. 045018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The energy and beam current dependence of Ga+focused ion beam milling damage on the sidewall of vertical rectifiers fabricated on n-type Ga2O3was investigated with 5–30 kV ions and beam currents from 1.3–20 nA. The sidewall damage was introduced by etching a mesa along one edge of existing Ga2O3rectifiers. We employed on-state resistance, forward and reverse leakage current, Schottky barrier height, and diode ideality factor from the vertical rectifiers as potential measures of the extent of the ion-induced sidewall damage. Rectifiers of different diameters were exposed to the ion beams and the “zero-area” parameters extracted by extrapolating to zero area and normalizing for milling depth. Forward currents degraded with exposure to any of our beam conductions, while reverse current was unaffected. On-state resistance was found to be most sensitive of the device parameters to Ga+beam energy and current. Beam current was the most important parameter in creating sidewall damage. Use of subsequent lower beam energies and currents after an initial 30 kV mill sequence was able to reduce residual damage effects but not to the point of initial lower beam current exposures.
-
Highly resistive undoped p-type gallium oxide samples were subjected to cumulative proton irradiation with energies ranging from 25 to 70 keV and doses in the 1.6 × 1014–3.6 × 1014cm−2range. Proton irradiation resulted in up to a factor of 2 reduction of minority electron diffusion length in the samples for temperatures between ∼ 300 and 400 K. Electron injection into the samples under test using a scanning electron microscope beam leads to pronounced elongation of diffusion length beyond the pre-irradiation values, thus demonstrating stable (days after injection) recovery of adverse radiation impact on minority carrier transport. The activation energy of 91 meV estimated from the temperature dependent diffusion length vs electron injection duration experiments is likely related to the local potential barrier height for native defects associated with the phenomenon of interest.
-
High crystalline quality thick β-Ga2O3drift layers are essential for multi-kV vertical power devices. Low-pressure chemical vapor deposition (LPCVD) is suitable for achieving high growth rates. This paper presents a systematic study of the Schottky barrier diodes fabricated on four different Si-doped homoepitaxial β-Ga2O3thin films grown on Sn-doped (010) and (001) β-Ga2O3substrates by LPCVD with a fast growth rate varying from 13 to 21 μm/h. A higher temperature growth results in the highest reported growth rate to date. Room temperature current density–voltage data for different Schottky diodes are presented, and diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage are studied. Temperature dependence (25–250 °C) of the ideality factor, barrier height, and specific on-resistance is also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.
-
We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated by deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system.