Abstract C-Alkyl glycosides represent an attractive class of nonhydrolyzable carbohydrate mimetics which possess enormous potential as next-generation therapeutics. Methods for the direct stereoselective synthesis of C-alkyl glycosides with a broad substrate tolerance are limited, however. This is especially in the case of β-linked C-alkyl glycosides, where direct methods for synthesis from commonly available coupling partners remain limited. This Account describes the evolution of our laboratory’s studies on glycosyl sulfonate chemistry from a method for the construction of simple β-linked 2-deoxy-sugars to a technology for the direct synthesis of β-linked acyl and homoacyl glycosides that can be elaborated into more complex structures. 1 Introduction 2 Glycosyl Sulfonates 3 Glycosyl Sulfonates in Oligosaccharide Synthesis 4 Matching Donor and Sulfonate Reactivity 5 β-Linked C-Acyl and Homoacyl Glycoside Synthesis 6 Elaboration to other Products 7 Conclusion
more »
« less
Glycosyl Sulfonates Beyond Triflates
Abstract While glycosyl triflates are frequently invoked as intermediates in many chemical glycosylation reactions, the chemistry of other glycosyl sulfonates remains comparatively underexplored. Given the reactivity of sulfonates can span several orders of magnitude, this represents an untapped resource for the development of stereoselective glycosylation reactions. This personal account describes our laboratories efforts to take advantage of this reactivity to develop β‐specific glycosylation reactions. Initial investigations led to the development of 2‐deoxy‐sugar tosylates as highly selective donors for β‐glycoside synthesis, an approach which has been used to great success by our group and others for the construction of deoxy‐sugar oligosaccharides and natural products. Subsequent studies demonstrate that “matching” the reactivity of the sulfonate to that of the sugar donor leads to highly selective SN2‐glycosylations with a range of substrates.
more »
« less
- Award ID(s):
- 1954841
- PAR ID:
- 10303415
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- The Chemical Record
- Volume:
- 21
- Issue:
- 11
- ISSN:
- 1527-8999
- Page Range / eLocation ID:
- p. 3102-3111
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A combination of DFT calculations and experiments is used to describe how the selection of a promoter can control the stereochemical outcome of glycosylation reactions with the deoxy sugar saccharosamine. Depending on the promoter, either α- or β-linked reactive intermediates are formed. These studies show that differential modes of activation lead to the formation of distinct intermediates that undergo highly selective reactions through an SN2-like mechanism.more » « less
-
null (Ed.)While strategies involving a 2e − transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or S N side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2- cis -thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp 2 and sp 3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.more » « less
-
Abstract Chemoenzymatic approaches using carbohydrate‐active enzymes (CAZymes) offer a promising avenue for the synthesis of glycans like oligosaccharides. Here, we report a novel chemoenzymatic route for cellodextrins synthesis employed by chimeric CAZymes, akin to native glycosyltransferases, involving the unprecedented participation of a “non‐catalytic” lectin‐like domain or carbohydrate‐binding modules (CBMs) in the catalytic step for glycosidic bond synthesis using β‐cellobiosyl donor sugars as activated substrates. CBMs are often thought to play a passive substrate targeting role in enzymatic glycosylation reactions mostly via overcoming substrate diffusion limitations for tethered catalytic domains (CDs) but are not known to participate directly in any nucleophilic substitution mechanisms that impact the actual glycosyl transfer step. This study provides evidence for the direct participation of CBMs in the catalytic reaction step for β‐glucan glycosidic bonds synthesis enhancing activity for CBM‐based CAZyme chimeras by >140‐fold over CDs alone. Dynamic intradomain interactions that facilitate this poorly understood reaction mechanism were further revealed by small‐angle X‐ray scattering structural analysis along with detailed mutagenesis studies to shed light on our current limited understanding of similar transglycosylation‐type reaction mechanisms. In summary, our study provides a novel strategy for engineering similar CBM‐based CAZyme chimeras for the synthesis of bespoke oligosaccharides using simple activated sugar monomers.more » « less
-
Abstract Herein, we present an approach for catalytic orthogonal glycosylation utilizing earth‐abundant copper carbenes. This method operates under mild conditions and employs readily accessible starting materials, including benchtop stable enynal‐derived glycosyl donors, synthesized at the gram scale. The reaction accommodates a variety of glycosyl acceptors, including primary, secondary, and tertiary alcohols. The enynal‐derived copper carbenes exhibit remarkable reactivity and selectivity, allowing for the formation of glycosidic linkages with different protecting groups and stereochemical patterns. This approach provides access to both 1,2‐cis‐ and ‐trans‐glycosidic linkages. The product stereoselectivity is independent of the anomeric configuration of the glycosyl donor, which also has orthogonal reactivity to widely used alkynes and thioglycoside donors. An iterative synthesis of a trisaccharide further demonstrates the application of this orthogonal reactivity.more » « less
An official website of the United States government
