During high current density operation, water production in the polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst layer can negatively affect performance by lowering mass transport of oxygen into the cathode. In this paper, a novel heat treatment process for controlling the ionic polymer/gas interface property of the fuel cell catalyst layer is investigated and then incorporated into the membrane electrode assembly (MEA) fabrication process. XPS characterization of the catalyst layer’s ionomer-gas interface at its outer surface and its sublayers’ surfaces obtained by scraping off successive layers of the catalyst layers confirms that a hydrophobic ionomer interface can be achieved across the catalyst layer using a specific heat treatment condition. Based on the results of the catalyst layer study, the MEA fabrication process is modified to identify heat treatment configuration and conditions that will create an optimal hydrophobic ionomer-gas interface inside the cathode catalyst layer. Finally, fuel cell tests conducted on the conventional and new MEAs under different operating temperatures show the performance of the fuel cells with the treated MEAs was > 130% higher than that with the conventional MEA at 25 °C and 70 °C with humidified air and > 45% higher at 70 °C with dry air. The durability of the hydrophobic treatment on the cathode catalyst layer ionomer is also confirmed by the accelerated stress test.
more »
« less
Corrosion-Induced Microstructural Variability Affects Transport-Kinetics Interaction in PEM Fuel Cell Catalyst Layers
The ionomer, which is responsible for proton transport, oxygen accessibility to reaction sites, and binding the carbon support particles, plays a central role in dictating the catalyst layer performance. In this work, we study the effect of ionomer distribution owing to the corrosion induced degradation mode in the catalyst layer based on a combined mesoscale modeling and experimental image-based data. It is observed that the coverage of the ionomer over the platinum-carbon interface is heterogeneous at the pore-scale which in turn can critically affect the electrode-scale performance. Further, an investigation of the response of the pristine as well as degraded microstructures that have been exposed to carbon support corrosion has been demonstrated to highlight the kinetic-transport underpinnings on the catalyst layer performance decay.
more »
« less
- Award ID(s):
- 1805215
- PAR ID:
- 10303521
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 167
- Issue:
- 8
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- Article No. 084519
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Performance and durability of electrodes in proton exchange membrane fuel cells (PEMFCs), as one of the most promising zero‐emission power generation technologies, depend on the composition, microstructure, and distribution of its components—metal catalyst, carbon support, and ionomer. Their improvement requires an in‐depth understanding of the electrodes’ structure‐property‐performance relationship, for which transmission electron microscopy (TEM) has been an invaluable tool. However, the conventional TEM sample preparation, namely epoxy‐embedding ultramicrotomy, poses impediments in imaging ionomer and distinguishing it from carbon. Therefore, in this research, an epoxy‐free ultramicrotome technique is implemented on beginning‐of‐life (BOL) and end‐of‐life (EOL) PEMFC samples. For the first time, TEM and electron tomography‐TEM images reveals fascinating details of the ionomer network, carbon particles’ structure, and Pt distribution in BOL, as well as their structural changes after the cell degradation. Finally, the structural descriptors, extracted by a proprietary quantification method, are correlated with visual observations.more » « less
-
Abstract Increasing catalytic activity and durability of atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction (ORR) cathode in proton‐exchange‐membrane fuel cells remains a grand challenge. Here, a high‐power and durable Co–N–C nanofiber catalyst synthesized through electrospinning cobalt‐doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X‐ray computed tomography verifies the well‐distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm−2in a practical H2/air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM‐free electrodes with improved performance and durability.more » « less
-
A PEM fuel cell with a hydrophobically treated cathode catalyst layer (CL) demonstrates ∼220% peak power increase with humidified air at 70 °C. To understand the reasons of the increase, a mathematical model was developed focusing on the oxygen-water two-phase transport phenomena in the CL. It suggests the treatment affects the CL in two ways. First, the interface of the ionomer layer exposed to the gas pores becomes more hydrophobic, facilitating less liquid water coverage and faster water drainage from the CL and resulting in better performance at high current densities. Second, it also affects the hydration level in the ionomer phase resulting in higher oxygen concentration in the ionomer phase on and in the catalyst agglomerates, leading to higher performance over the whole polarization curve. The properties having significant influence on the model fitting the experimental data are the capillary pressure property of the CL, the hydrophobic ionomer ratio in the catalyst agglomerate, and the oxygen solubility/diffusivity in the Nafion® phases. With this experimentally verified model, additional case studies combining the hydrophobic gas diffusion material with the hydrophobic CL demonstrate that the membrane’s self-humidification (zero-net-water flux) and peak power enhancement (∼15%) can be reached simultaneously, providing direction for the future materials development.more » « less
-
Polymer Electrolyte Fuel Cells (PEFCs) exhibit considerable performance decay with cycling owing to the degradation of platinum (Pt) catalysts, resulting in the loss of the valuable electrochemically active surface area. Catalyst inventory retention is thus a necessity for a sustained cathodic oxygen reduction reaction (ORR) and to ameliorate the life expectancy of PEFCs. We demonstrate a thermo-kinetic model cognizant of processes like platinum particle dissolution–reprecipitation and oxide formation coupled with an electrochemical reactive transport model to derive mechanistic insights into the deleterious phenomena at the interfacial scale. The heterogeneous nature of particle aging in a catalyst layer environment is delineated through coarsening–shrinking zones and further comprehension of instability signatures is developed from the dissolution affinity of diameter bins through a metric, onset time. The severe degradation at high temperature and under fully humidified conditions is intertwined with the local transport resistance and the critical transient, where the catalyst nanoparticles reach a limiting diameter stage. We further reveal the degradation-performance characteristics through variation in the ionomer volume fraction and the mean size of the particle distribution in the electrode. It has been found that the kinetic and transport characteristics are crucially dependent on the interplay of two modes – one leading to the depletion of the catalyst nanoparticles and the other that emanates from catalyst coarsening.more » « less
An official website of the United States government
