skip to main content

Title: A One-Dimensional Model of a PEM Fuel Cell with the Cathode Catalyst Layer Hydrophobically Treated for Water Management

A PEM fuel cell with a hydrophobically treated cathode catalyst layer (CL) demonstrates ∼220% peak power increase with humidified air at 70 °C. To understand the reasons of the increase, a mathematical model was developed focusing on the oxygen-water two-phase transport phenomena in the CL. It suggests the treatment affects the CL in two ways. First, the interface of the ionomer layer exposed to the gas pores becomes more hydrophobic, facilitating less liquid water coverage and faster water drainage from the CL and resulting in better performance at high current densities. Second, it also affects the hydration level in the ionomer phase resulting in higher oxygen concentration in the ionomer phase on and in the catalyst agglomerates, leading to higher performance over the whole polarization curve. The properties having significant influence on the model fitting the experimental data are the capillary pressure property of the CL, the hydrophobic ionomer ratio in the catalyst agglomerate, and the oxygen solubility/diffusivity in the Nafion® phases. With this experimentally verified model, additional case studies combining the hydrophobic gas diffusion material with the hydrophobic CL demonstrate that the membrane’s self-humidification (zero-net-water flux) and peak power enhancement (∼15%) can be reached simultaneously, providing direction for the future materials development.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Page Range / eLocation ID:
Article No. 114505
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A PEM fuel cell with the Nafion ionomer phase of the cathode catalyst layer (CL) that was exposed to hot dry gas during the hot‐pressing process showed improved performance over the whole current density range and ~ 220% peak power increase with humidified air at 80°C. This enhanced performance is attributed to the modified structure of the perfluorosulfonic acid (PFSA) ionomer layer in the CL during the MEA's hot‐pressing process. The dry gas exposure above the glass transition temperature (Tg) results in the aggregation of the ionic groups to retain the residue water molecules. This process separates the ionomer into ionic‐group‐rich domains and ionic‐group‐sparse domains. The ionic‐group‐sparse domains create hydrophobic interface and reactant transport channels with lower water content and thus higher oxygen solubility in the ionomer. Accordingly, the water‐unsaturated ionomer and its surface hydrophobicity enhance the kinetic‐controlled and concentration‐polarized regions of the fuel cell polarization curve, respectively. The surface hydrophobicity of the ionomer layer is analyzed by the contact angle measurement and XPS. The durability of the hydrophobic effect belowTgis demonstrated by boiling the treated material. Re‐treating the hydrophobic sample with humidified gas exposure aboveTgeventually exhibits hydrophilic features, further proving the manipulability of the ionic group distribution.

    more » « less
  2. During high current density operation, water production in the polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst layer can negatively affect performance by lowering mass transport of oxygen into the cathode. In this paper, a novel heat treatment process for controlling the ionic polymer/gas interface property of the fuel cell catalyst layer is investigated and then incorporated into the membrane electrode assembly (MEA) fabrication process. XPS characterization of the catalyst layer’s ionomer-gas interface at its outer surface and its sublayers’ surfaces obtained by scraping off successive layers of the catalyst layers confirms that a hydrophobic ionomer interface can be achieved across the catalyst layer using a specific heat treatment condition. Based on the results of the catalyst layer study, the MEA fabrication process is modified to identify heat treatment configuration and conditions that will create an optimal hydrophobic ionomer-gas interface inside the cathode catalyst layer. Finally, fuel cell tests conducted on the conventional and new MEAs under different operating temperatures show the performance of the fuel cells with the treated MEAs was > 130% higher than that with the conventional MEA at 25 °C and 70 °C with humidified air and > 45% higher at 70 °C with dry air. The durability of the hydrophobic treatment on the cathode catalyst layer ionomer is also confirmed by the accelerated stress test. 
    more » « less
  3. The porous transport layer (PTL)/catalyst layer (CL) interface plays a crucial role in the achievement of high performance and efficiency in polymer electrolyte membrane water electrolyzers (PEMWEs). This study investigated the effects of the PTL/CL interface on the degradation of membrane electrode assemblies (MEAs) during a 4000 h test, comparing the MEAs assembled with uncoated and Ir-coated Ti PTLs. Our results show that compared to an uncoated PTL/CL interface, an optimized interface formed when using a platinum group metal (PGM) coating, i.e., an iridium layer at the PTL/CL interface, and reduced the degradation of the MEA. The agglomeration and formation of voids and cracks could be found for both MEAs after the long-term test, but the incorporation of an Ir coating on the PTL did not affect the morphology change or oxidation of IrOxin the catalyst layer. In addition, our studies suggest that the ionomer loss and restructuring of the anodic MEA can also be reduced by Ir coating of the PTL/CL interface. Optimization of the PTL/CL interface improves the performance and durability of a PEMWE.

    more » « less
  4. Polymer Electrolyte Fuel Cells (PEFCs) exhibit considerable performance decay with cycling owing to the degradation of platinum (Pt) catalysts, resulting in the loss of the valuable electrochemically active surface area. Catalyst inventory retention is thus a necessity for a sustained cathodic oxygen reduction reaction (ORR) and to ameliorate the life expectancy of PEFCs. We demonstrate a thermo-kinetic model cognizant of processes like platinum particle dissolution–reprecipitation and oxide formation coupled with an electrochemical reactive transport model to derive mechanistic insights into the deleterious phenomena at the interfacial scale. The heterogeneous nature of particle aging in a catalyst layer environment is delineated through coarsening–shrinking zones and further comprehension of instability signatures is developed from the dissolution affinity of diameter bins through a metric, onset time. The severe degradation at high temperature and under fully humidified conditions is intertwined with the local transport resistance and the critical transient, where the catalyst nanoparticles reach a limiting diameter stage. We further reveal the degradation-performance characteristics through variation in the ionomer volume fraction and the mean size of the particle distribution in the electrode. It has been found that the kinetic and transport characteristics are crucially dependent on the interplay of two modes – one leading to the depletion of the catalyst nanoparticles and the other that emanates from catalyst coarsening. 
    more » « less
  5. Abstract

    Ionic liquids (ILs) have shown to be promising additives to the catalyst layer to enhance oxygen reduction reaction in polymer electrolyte fuel cells. However, fundamental understanding of their role in complex catalyst layers in practically relevant membrane electrode assembly environment is needed for rational design of highly durable and active platinum-based catalysts. Here we explore three imidazolium-derived ionic liquids, selected for their high proton conductivity and oxygen solubility, and incorporate them into high surface area carbon black support. Further, we establish a correlation between the physical properties and electrochemical performance of the ionic liquid-modified catalysts by providing direct evidence of ionic liquids role in altering hydrophilic/hydrophobic interactions within the catalyst layer interface. The resulting catalyst with optimized interface design achieved a high mass activity of 347 A g−1Ptat 0.9 V under H2/O2, power density of 0.909 W cm−2under H2/air and 1.5 bar, and had only 0.11 V potential decrease at 0.8 A cm−2after 30 k accelerated stress test cycles. This performance stems from substantial enhancement in Pt utilization, which is buried inside the mesopores and is now accessible due to ILs addition.

    more » « less