Abstract IntroductionAutomated computational assessment of neuropsychological tests would enable widespread, cost‐effective screening for dementia. MethodsA novel natural language processing approach is developed and validated to identify different stages of dementia based on automated transcription of digital voice recordings of subjects’ neuropsychological tests conducted by the Framingham Heart Study (n= 1084). Transcribed sentences from the test were encoded into quantitative data and several models were trained and tested using these data and the participants’ demographic characteristics. ResultsAverage area under the curve (AUC) on the held‐out test data reached 92.6%, 88.0%, and 74.4% for differentiating Normal cognition from Dementia, Normal or Mild Cognitive Impairment (MCI) from Dementia, and Normal from MCI, respectively. DiscussionThe proposed approach offers a fully automated identification of MCI and dementia based on a recorded neuropsychological test, providing an opportunity to develop a remote screening tool that could be adapted easily to any language.
more »
« less
Detection of dementia on voice recordings using deep learning: a Framingham Heart Study
Abstract Background Identification of reliable, affordable, and easy-to-use strategies for detection of dementia is sorely needed. Digital technologies, such as individual voice recordings, offer an attractive modality to assess cognition but methods that could automatically analyze such data are not readily available. Methods and findings We used 1264 voice recordings of neuropsychological examinations administered to participants from the Framingham Heart Study (FHS), a community-based longitudinal observational study. The recordings were 73 min in duration, on average, and contained at least two speakers (participant and examiner). Of the total voice recordings, 483 were of participants with normal cognition (NC), 451 recordings were of participants with mild cognitive impairment (MCI), and 330 were of participants with dementia (DE). We developed two deep learning models (a two-level long short-term memory (LSTM) network and a convolutional neural network (CNN)), which used the audio recordings to classify if the recording included a participant with only NC or only DE and to differentiate between recordings corresponding to those that had DE from those who did not have DE (i.e., NDE (NC+MCI)). Based on 5-fold cross-validation, the LSTM model achieved a mean (±std) area under the receiver operating characteristic curve (AUC) of 0.740 ± 0.017, mean balanced accuracy of 0.647 ± 0.027, and mean weighted F1 score of 0.596 ± 0.047 in classifying cases with DE from those with NC. The CNN model achieved a mean AUC of 0.805 ± 0.027, mean balanced accuracy of 0.743 ± 0.015, and mean weighted F1 score of 0.742 ± 0.033 in classifying cases with DE from those with NC. For the task related to the classification of participants with DE from NDE, the LSTM model achieved a mean AUC of 0.734 ± 0.014, mean balanced accuracy of 0.675 ± 0.013, and mean weighted F1 score of 0.671 ± 0.015. The CNN model achieved a mean AUC of 0.746 ± 0.021, mean balanced accuracy of 0.652 ± 0.020, and mean weighted F1 score of 0.635 ± 0.031 in classifying cases with DE from those who were NDE. Conclusion This proof-of-concept study demonstrates that automated deep learning-driven processing of audio recordings of neuropsychological testing performed on individuals recruited within a community cohort setting can facilitate dementia screening.
more »
« less
- PAR ID:
- 10303605
- Date Published:
- Journal Name:
- Alzheimer's Research & Therapy
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 1758-9193
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract INTRODUCTIONIdentification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials. METHODSWe applied natural language processing techniques along with machine learning methods to develop a method for automated prediction of progression to AD within 6 years using speech. The study design was evaluated on the neuropsychological test interviews ofn = 166 participants from the Framingham Heart Study, comprising 90 progressive MCI and 76 stable MCI cases. RESULTSOur best models, which used features generated from speech data, as well as age, sex, and education level, achieved an accuracy of 78.5% and a sensitivity of 81.1% to predict MCI‐to‐AD progression within 6 years. DISCUSSIONThe proposed method offers a fully automated procedure, providing an opportunity to develop an inexpensive, broadly accessible, and easy‐to‐administer screening tool for MCI‐to‐AD progression prediction, facilitating development of remote assessment. HighlightsVoice recordings from neuropsychological exams coupled with basic demographics can lead to strong predictive models of progression to dementia from mild cognitive impairment.The study leveraged AI methods for speech recognition and processed the resulting text using language models.The developed AI‐powered pipeline can lead to fully automated assessment that could enable remote and cost‐effective screening and prognosis for Alzehimer's disease.more » « less
-
Babulal, Ganesh (Ed.)Digital voice recordings can offer affordable, accessible ways to evaluate behavior and function. We assessed how combining different low-level voice descriptors can evaluate cognitive status. Using voice recordings from neuropsychological exams at the Framingham Heart Study, we developed a machine learning framework fusing spectral, prosodic, and sound quality measures early in the training cycle. The model’s area under the receiver operating characteristic curve was 0.832 (±0.034) in differentiating persons with dementia from those who had normal cognition. This offers a data-driven framework for analyzing minimally processed voice recordings for cognitive assessment, highlighting the value of digital technologies in disease detection and intervention.more » « less
-
null (Ed.)Aim:Although clinicians primarily diagnose dementia based on a combination of metrics such as medical history and formal neuropsychological tests, recent work using linguistic analysis of narrative speech to identify dementia has shown promising results. We aim to build upon research by Thomas JA & Burkardt HA et al. (J Alzheimers Dis. 2020;76:905–2) and Alhanai et al. (arXiv:1710.07551v1. 2020) on the Framingham Heart Study (FHS) Cognitive Aging Cohort by 1) demonstrating the predictive capability of linguistic analysis in differentiating cognitively normal from cognitively impaired participants and 2) comparing the performance of the original linguistic features with the performance of expanded features.Methods:Data were derived from a subset of the FHS Cognitive Aging Cohort. We analyzed a sub-selection of 98 participants, which provided 127 unique audio files and clinical observations (n = 127, female = 47%, cognitively impaired = 43%). We built on previous work which extracted original linguistic features from transcribed audio files by extracting expanded features. We used both feature sets to train logistic regression classifiers to distinguish cognitively normal from cognitively impaired participants and compared the predictive power of the original and expanded linguistic feature sets, and participants’ Mini-Mental State Examination (MMSE) scores.Results:Based on the area under the receiver-operator characteristic curve (AUC) of the models, both the original (AUC = 0.882) and expanded (AUC = 0.883) feature sets outperformed MMSE (AUC = 0.870) in classifying cognitively impaired and cognitively normal participants. Although the original and expanded feature sets had similar AUC, the expanded feature set showed better positive and negative predictive value [expanded: positive predictive value (PPV) = 0.738, negative predictive value (NPV) = 0.889; original: PPV = 0.701, NPV = 0.869].Conclusions:Linguistic analysis has been shown to be a potentially powerful tool for clinical use in classifying cognitive impairment. This study expands the work of several others, but further studies into the plausibility of speech analysis in clinical use are vital to ensure the validity of speech analysis for clinical classification of cognitive impairment.more » « less
-
Abstract INTRODUCTIONIdentifying mild cognitive impairment (MCI) patients at risk for dementia could facilitate early interventions. Using electronic health records (EHRs), we developed a model to predict MCI to all‐cause dementia (ACD) conversion at 5 years. METHODSCox proportional hazards model was used to identify predictors of ACD conversion from EHR data in veterans with MCI. Model performance (area under the receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held‐out data subset. RESULTSOf 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had good discriminative performance (AUC 0.73 [95% confidence interval (CI) 0.72–0.74]), and calibration (Brier score 0.18 [95% CI 0.17–0.18]). Age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors, while body mass index, alcohol abuse, and sleep apnea were protective factors. DISCUSSIONEHR‐based prediction model had good performance in identifying 5‐year MCI to ACD conversion and has potential to assist triaging of at‐risk patients. HighlightsOf 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted to all‐cause dementia within 5 years.Electronic health record prediction models demonstrated good performance (area under the receiver operating characteristic curve 0.73; Brier 0.18).Age and vascular‐related morbidities were predictors of dementia conversion.Synthetic data was comparable to real data in modeling MCI to dementia conversion. Key PointsAn electronic health record–based model using demographic and co‐morbidity data had good performance in identifying veterans who convert from mild cognitive impairment (MCI) to all‐cause dementia (ACD) within 5 years.Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors for 5‐year conversion from MCI to ACD.High body mass index, alcohol abuse, and sleep apnea were protective factors for 5‐year conversion from MCI to ACD.Models using synthetic data, analogs of real patient data that retain the distribution, density, and covariance between variables of real patient data but are not attributable to any specific patient, performed just as well as models using real patient data. This could have significant implications in facilitating widely distributed computing of health‐care data with minimized patient privacy concern that could accelerate scientific discoveries.more » « less
An official website of the United States government

