skip to main content


Title: Matrix Completion with Model-free Weighting
In this paper, we propose a novel method for matrix completion under general non- uniform missing structures. By controlling an upper bound of a novel balancing error, we construct weights that can actively adjust for the non-uniformity in the empirical risk without explicitly modeling the observation probabilities, and can be computed efficiently via convex optimization. The recovered matrix based on the proposed weighted empirical risk enjoys appealing theoretical guarantees. In particular, the proposed method achieves stronger guarantee than existing work in terms of the scaling with respect to the observation probabilities, under asymptotically heterogeneous missing settings (where entry-wise observation probabilities can be of different orders). These settings can be regarded as a better theoretical model of missing patterns with highly varying probabilities. We also provide a new minimax lower bound under a class of heterogeneous settings. Numerical experiments are also provided to demonstrate the effectiveness of the proposed method.  more » « less
Award ID(s):
1711952
NSF-PAR ID:
10303652
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the problem of high-dimensional Principal Component Analysis (PCA) with missing observations. In a simple, homogeneous observation model, we show that an existing observed-proportion weighted (OPW) estimator of the leading principal components can (nearly) attain the minimax optimal rate of convergence, which exhibits an interesting phase transition. However, deeper investigation reveals that, particularly in more realistic settings where the observation probabilities are heterogeneous, the empirical performance of the OPW estimator can be unsatisfactory; moreover, in the noiseless case, it fails to provide exact recovery of the principal components. Our main contribution, then, is to introduce a new method, which we call primePCA, that is designed to cope with situations where observations may be missing in a heterogeneous manner. Starting from the OPW estimator, primePCA iteratively projects the observed entries of the data matrix onto the column space of our current estimate to impute the missing entries, and then updates our estimate by computing the leading right singular space of the imputed data matrix. We prove that the error of primePCA converges to zero at a geometric rate in the noiseless case, and when the signal strength is not too small. An important feature of our theoretical guarantees is that they depend on average, as opposed to worst-case, properties of the missingness mechanism. Our numerical studies on both simulated and real data reveal that primePCA exhibits very encouraging performance across a wide range of scenarios, including settings where the data are not Missing Completely At Random.

     
    more » « less
  2. In this paper we derive a new capability for robots to measure relative direction, or Angle-of-Arrival (AOA), to other robots, while operating in non-line-of-sight and unmapped environments, without requiring external infrastructure. We do so by capturing all of the paths that a WiFi signal traverses as it travels from a transmitting to a receiving robot in the team, which we term as an AOA profile. The key intuition behind our approach is to emulate antenna arrays in the air as a robot moves freely in 2D or 3D space. The small differences in the phase and amplitude of WiFi signals are thus processed with knowledge of a robots’ local displacements (often provided via inertial sensors) to obtain the profile, via a method akin to Synthetic Aperture Radar (SAR). The main contribution of this work is the development of i) a framework to accommodate arbitrary 2D and 3D trajectories, as well as continuous mobility of both transmitting and receiving robots, while computing AOA profiles between them and ii) an accompanying analysis that provides a lower bound on variance of AOA estimation as a function of robot trajectory geometry that is based on the Cramer Rao Bound and antenna array theory. This is a critical distinction with previous work on SAR that restricts robot mobility to prescribed motion patterns, does not generalize to the full 3D space, and/or requires transmitting robots to be static during data acquisition periods. In fact, we find that allowing robots to use their full mobility in 3D space while performing SAR, results in more accurate AOA profiles and thus better AOA estimation. We formally characterize this observation as the informativeness of the trajectory; a computable quantity for which we derive a closed form. All theoretical developments are substantiated by extensive simulation and hardware experiments on air/ground robot platforms. Our experimental results bolster our theoretical findings, demonstrating that 3D trajectories provide enhanced and consistent accuracy, with AOA error of less than 10 deg for 95% of trials. We also show that our formulation can be used with an off-the-shelf trajectory estimation sensor (Intel RealSense T265 tracking camera), for estimating the robots’ local displacements, and we provide theoretical as well as empirical results that show the impact of typical trajectory estimation errors on the measured AOA. Finally, we demonstrate the performance of our system on a multi-robot task where a heterogeneous air/ground pair of robots continuously measure AOA profiles over a WiFi link to achieve dynamic rendezvous in an unmapped, 300 square meter environment with occlusions. 
    more » « less
  3. Abstract

    Modeling and drawing inference on the joint associations between single‐nucleotide polymorphisms and a disease has sparked interest in genome‐wide associations studies. In the motivating Boston Lung Cancer Survival Cohort (BLCSC) data, the presence of a large number of single nucleotide polymorphisms of interest, though smaller than the sample size, challenges inference on their joint associations with the disease outcome. In similar settings, we find that neither the debiased lasso approach (van de Geer et al., 2014), which assumes sparsity on the inverse information matrix, nor the standard maximum likelihood method can yield confidence intervals with satisfactory coverage probabilities for generalized linear models. Under this “largen, divergingp” scenario, we propose an alternative debiased lasso approach by directly inverting the Hessian matrix without imposing the matrix sparsity assumption, which further reduces bias compared to the original debiased lasso and ensures valid confidence intervals with nominal coverage probabilities. We establish the asymptotic distributions of any linear combinations of the parameter estimates, which lays the theoretical ground for drawing inference. Simulations show that the proposedrefineddebiased estimating method performs well in removing bias and yields honest confidence interval coverage. We use the proposed method to analyze the aforementioned BLCSC data, a large‐scale hospital‐based epidemiology cohort study investigating the joint effects of genetic variants on lung cancer risks.

     
    more » « less
  4. Summary

    The upper bounds on the coverage probabilities of the confidence regions based on blockwise empirical likelihood and non-standard expansive empirical likelihood methods for time series data are investigated via studying the probability of violating the convex hull constraint. The large sample bounds are derived on the basis of the pivotal limit of the blockwise empirical log-likelihood ratio obtained under fixed b asymptotics, which has recently been shown to provide a more accurate approximation to the finite sample distribution than the conventional χ2-approximation. Our theoretical and numerical findings suggest that both the finite sample and the large sample upper bounds for coverage probabilities are strictly less than 1 and the blockwise empirical likelihood confidence region can exhibit serious undercoverage when the dimension of moment conditions is moderate or large, the time series dependence is positively strong or the block size is large relative to the sample size. A similar finite sample coverage problem occurs for non-standard expansive empirical likelihood. To alleviate the coverage bound problem, we propose to penalize both empirical likelihood methods by relaxing the convex hull constraint. Numerical simulations and data illustrations demonstrate the effectiveness of our proposed remedies in terms of delivering confidence sets with more accurate coverage. Some technical details and additional simulation results are included in on-line supplemental material.

     
    more » « less
  5. null (Ed.)
    Abstract Subspace clustering is the unsupervised grouping of points lying near a union of low-dimensional linear subspaces. Algorithms based directly on geometric properties of such data tend to either provide poor empirical performance, lack theoretical guarantees or depend heavily on their initialization. We present a novel geometric approach to the subspace clustering problem that leverages ensembles of the $K$-subspace (KSS) algorithm via the evidence accumulation clustering framework. Our algorithm, referred to as ensemble $K$-subspaces (EKSSs), forms a co-association matrix whose $(i,j)$th entry is the number of times points $i$ and $j$ are clustered together by several runs of KSS with random initializations. We prove general recovery guarantees for any algorithm that forms an affinity matrix with entries close to a monotonic transformation of pairwise absolute inner products. We then show that a specific instance of EKSS results in an affinity matrix with entries of this form, and hence our proposed algorithm can provably recover subspaces under similar conditions to state-of-the-art algorithms. The finding is, to the best of our knowledge, the first recovery guarantee for evidence accumulation clustering and for KSS variants. We show on synthetic data that our method performs well in the traditionally challenging settings of subspaces with large intersection, subspaces with small principal angles and noisy data. Finally, we evaluate our algorithm on six common benchmark datasets and show that unlike existing methods, EKSS achieves excellent empirical performance when there are both a small and large number of points per subspace. 
    more » « less