skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stratospheric contribution to the summertime high surface ozone events over the western united states
Abstract The stratospheric influence on summertime high surface ozone ( O 3 ) events is examined using a twenty-year simulation from the Whole Atmosphere Community Climate Model. We find that O 3 transported from the stratosphere makes a significant contribution to the surface O 3 variability where background surface O 3 exceeds the 95thpercentile, especially over western U.S. Maximum covariance analysis is applied to O 3 anomalies paired with stratospheric O 3 tracer anomalies to identify the stratospheric intrusion and the underlying dynamical mechanism. The first leading mode corresponds to deep stratospheric intrusions in the western and northern tier of the U.S., and intensified northeasterlies in the mid-to-lower troposphere along the west coast, which also facilitate the transport to the eastern Pacific Ocean. The second leading mode corresponds to deep intrusions over the Intermountain Regions. Both modes are associated with eastward propagating baroclinic systems, which are amplified near the end of the North Pacific storm tracks, leading to strong descents over the western U.S.  more » « less
Award ID(s):
1802248
PAR ID:
10303683
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
10
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 1040a6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The sensitivity of urban canopy air temperature ( T a ) to anthropogenic heat flux ( Q A H ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of Δ T a / Δ Q A H (where Δ represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing Δ T a / Δ Q A H simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median Δ T a / Δ Q A H is around 0.01 K  W  m 2 1 over the CONUS. Besides the direct effect of Q A H on T a , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( c a ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and Δ T a / Δ Q A H is mostly controlled by the direct effect in summer. In winter, Δ T a / Δ Q A H becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with c a . The spatial and temporal (both seasonal and diurnal) variability of Δ T a / Δ Q A H as well as the nonlinear response of Δ T a to Δ Q A H are strongly related to the variability of c a , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models. 
    more » « less
  2. Abstract The family of transition-metal dipnictides has been of theoretical and experimental interest because this family hosts topological states and extremely large magnetoresistance (MR). Recently, T a A s 2 , a member of this family, has been predicted to support a topological crystalline insulating state. Here, by using high-resolution angle-resolved photoemission spectroscopy (ARPES), we reveal both closed and open pockets in the metallic Fermi surface (FS) and linearly dispersive bands on the ( 2 01 ) surface, along with the presence of extreme MR observed from magneto-transport measurements. A comparison of the ARPES results with first-principles computations shows that the linearly dispersive bands on the measured surface of T a A s 2 are trivial bulk bands. The absence of symmetry-protected surface state on the ( 2 01 ) surface indicates its topologically dark nature. The presence of open FS features suggests that the open-orbit fermiology could contribute to the extremely large MR of T a A s 2
    more » « less
  3. Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic X ˜ 2 Σ + ( 010 ) state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the X ˜ 2 Σ + ( 010 ) state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of 174 YbOH using high-resolution optical spectroscopy on the nominally forbidden X ˜ 2 Σ + ( 010 ) A ˜ 2 Π 1 / 2 ( 000 ) transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the X ˜ 2 Σ + ( 010 ) state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the X ˜ 2 Σ + ( 010 ) state and fit the molecule-frame dipole moment to D m o l = 2.16 ( 1 ) Dand the effective electrong-factor to g S = 2.07 ( 2 ) . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited A ˜ 2 Π 1 / 2 ( 000 ) state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. 
    more » « less
  4. Abstract M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find M B = 88.0 3.2 + 3.4 M Jup , putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with a = 38 3 + 4 au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detect H 2 18 O (3.7σsignificance) in the companion’s atmosphere and measure 12 CO / 13 CO = 98 22 + 28 and H 2 16 O / H 2 18 O = 240 80 + 145 after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure 12 CO / 13 CO = 79 16 + 21 and C 16 O / C 18 O = 288 70 + 125 for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO and H 2 18 O abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types. 
    more » « less
  5. Abstract Environmental seismic disturbances limit the sensitivity of LIGO gravitational wave detectors. Trains near the LIGO Livingston detector produce low frequency (0.5– 10 H z ) ground noise that couples into the gravitational wave sensitive frequency band (10– 100 H z ) through light reflected in mirrors and other surfaces. We investigate the effect of trains during the Advanced LIGO third observing run, and propose a method to search for narrow band seismic frequencies responsible for contributing to increases in scattered light. Through the use of the linear regression tool Lasso (least absolute shrinkage and selection operator) and glitch correlations, we identify the most common seismic frequencies that correlate with increases in detector noise as 0.6– 0.8 H z , 1.7– 1.9 H z , 1.8– 2.0 H z , and 2.3– 2.5 H z in the LIGO Livingston corner station. 
    more » « less