skip to main content

Title: Role of crystalline and damping anisotropy to the angular dependences of spin rectification effect in single crystal CoFe film
Abstract

The angular dependence of the microwave-driven spin rectification (SR) effect in single crystalline Co0.5Fe0.5alloy film is systematically investigated. Due to the strong current-orientation dependent anisotropic magnetoresistance (AMR), the SR effects in CoFe film strongly deviate from the ordinary sin 2φMcosφMrelation withφMdefined as the magnetization angle away from the current. A giant Gilbert damping anisotropy in the CoFe film with a maximum–minimum ratio of 520% is observed, which can impose a strong anisotropy onto magnetic susceptibility. The observed unusual angular dependence can be well explained by the theory including current-orientation dependent AMR and anisotropic magnetic susceptibility. Our work also suggests that the strong current-orientation dependent AMR in single crystalline CoFe film could exist up to the gigahertz frequency range.

Authors:
; ; ; ; ;
Award ID(s):
1941426 1933301
Publication Date:
NSF-PAR ID:
10303692
Journal Name:
New Journal of Physics
Volume:
22
Issue:
9
Page Range or eLocation-ID:
Article No. 093047
ISSN:
1367-2630
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A knowledge-based understanding of the plasma-surface-interaction with the aim to precisely control (reactive) sputtering processes for the deposition of thin films with tailored and reproducible properties is highly desired for industrial applications. In order to understand the effect of plasma parameter variations on the film properties, a single plasma parameter needs to be varied, while all other process and plasma parameters should remain constant. In this work, we use the Electrical Asymmetry Effect in a multi-frequency capacitively coupled plasma to control the ion energy at the substrate without affecting the ion-to-growth flux ratio by adjusting the relative phase betweenmore »two consecutive driving harmonics and their voltage amplitudes. Measurements of the ion energy distribution function and ion flux at the substrate by a retarding field energy analyzer combined with the determined deposition rateRdfor a reactive Ar/N2(8:1) plasma at 0.5 Pa show a possible variation of the mean ion energy at the substrateEmigwithin a range of 38 and 81 eV that allows the modification of the film characteristics at the grounded electrode, when changing the relative phase shiftθbetween the applied voltage frequencies, while the ion-to-growth flux ratio Γiggrcan be kept constant. AlN thin films are deposited and exhibit an increase in compressive film stress from −5.8 to −8.4 GPa as well as an increase in elastic modulus from 175 to 224 GPa as a function of the mean ion energy. Moreover, a transition from the preferential orientation (002) at low ion energies to the (100), (101) and (110) orientations at higher ion energies is observed. In this way, the effects of the ion energy on the growing film are identified, while other process relevant parameters remain unchanged.

    « less
  2. SUMMARY Anisotropy of remanent magnetization and magnetic susceptibility are highly sensitive and important indicators of geological processes which are largely controlled by mineralogical parameters of the ferrimagnetic fraction in rocks. To provide new physical insight into the complex interaction between magnetization structure, shape, and crystallographic relations, we here analyse ‘slice-and-view’ focused-ion-beam (FIB) nano-tomography data with micromagnetic modelling and single crystal hysteresis measurements. The data sets consist of 68 magnetite inclusions in orthopyroxene (Mg60) and 234 magnetite inclusions in plagioclase (An63) were obtained on mineral separates from the Rustenburg Layered Suite of the Bushveld Intrusive Complex, South Africa. Electron backscatter diffractionmore »was used to determine the orientation of the magnetite inclusions relative to the crystallographic directions of their silicate hosts. Hysteresis loops were calculated using the finite-element micromagnetics code MERRILL for each particle in 20 equidistributed field directions and compared with corresponding hysteresis loops measured using a vibrating sample magnetometer (VSM) on silicate mineral separates from the same samples. In plagioclase the ratio of remanent magnetization to saturation magnetization (Mrs/Ms) for both model and measurement agree within 1.0 per cent, whereas the coercivity (Hc) of the average modelled curve is 20 mT lower than the measured value of 60 mT indicating the presence of additional sources of high coercivity in the bulk sample. The VSM hysteresis measurements of the orthopyroxene were dominated by multidomain (MD) magnetite, whereas the FIB location was chosen to avoid MD particles and thus contains only particles with diameters <500 nm that are considered to be the most important carriers of palaeomagnetic remanence. To correct for this sampling bias, measured MD hysteresis loops from synthetic and natural magnetites were combined with the average hysteresis loop from the MERRILL models of the FIB region. The result shows that while the modelled small-particle fraction only explains 6 per cent of the best fit to the measured VSM hysteresis loop, it contributes 28 per cent of the remanent magnetization. The modelled direction of maximal Mrs/Ms in plagioclase is subparallel to [001]plag, whereas Hc does not show a strong orientation dependence. The easy axis of magnetic remanence is in the direction of the magnetite population normal to (150)plag and the maximum calculated susceptibility (χ*) is parallel to [010]plag. For orthopyroxene, the maximum Mrs/Ms, maximum χ* and the easy axis of remanence is strongly correlated to the elongation axes of magnetite in the [001]opx direction. The maximum Hc is oriented along [100]opx and parallel to the minimum χ*, which reflects larger vortex nucleation fields when the applied field direction approaches the short axis. The maximum Hc is therefore orthogonal to the maximum Mrs/Ms, controlled by axis-aligned metastable single-domain states at zero field. The results emphasize that the nature of anisotropy in natural magnetite does not just depend on the particle orientations, but on the presence of different stable and metastable domain states, and the mechanism of magnetic switching between them. Magnetic modelling of natural magnetic particles is therefore a vital method to extract and process anisotropic hysteresis parameters directly from the primary remanence carriers.« less
  3. Abstract

    Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way toquantum liquids with exotic entanglementthrough two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilizedmore »by strong antiferromagnetic interaction with Curie–Weiss temperature ranging from −766 to −169 K due to magnetic anisotropy. The anisotropy-averaged frustration parameter is 2000, seldom seen in iridates. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state; a mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10appear to form Ir3O12trimers of face-sharing IrO6octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1D chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the frustration mechanism leading to this quantum liquid.

    « less
  4. Abstract

    Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-splitH4andH5and the degenerateH6valence bands (VB) and the lowest degenerateH6conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of theH6CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriersmore »decay. Using ab initio density functional theory (DFT) calculations, we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along the c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These new findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties.

    « less
  5. Abstract

    This report is on the observation and theory of electric fieldEinduced non-linear magnetoelectric (NLME) effects in single crystal platelets of ferrimagnetic M-type strontium aluminum hexagonal ferrite. Using microwave measurement techniques, it was found that a DC electric field along the hexagonal c-axis results in significant changes in the saturation magnetization and uniaxial magneto-crystalline anisotropy field and these changes are proportional to the square of the applied static electric field. The NLME effects were present with or without an external bias magnetic field. TheE-induced variation in magnetic order parameters is attributed to weakening of magnetic exchange and spin–orbit interactions sincemore »conduction electrons in the ferrite are effectively excluded from both interactions while being in transit from one Fe ion to another. We present a phenomenological theory which considers magneto-bielectric effects characterized by a quadratic term in electric fieldEin the free energy density. The coefficients for the NLME coupling terms have been calculated from experimental data and they do show variations with the Al substitution level and the largest rates of change of the saturation magnetization and anisotropy constant change with the applied power were observed for x = 0.4. It was also clear from the study that strength of the NLME effect does not depend on the amount Al substitution, but critically depends on the electrical conductivity of the sample with the highest NLME coefficients estimated for the sample with the highest conductivity. Results of this work are of importance for a new family of electric field tunable, miniature, high frequency ferrite devices.

    « less