skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of crystalline and damping anisotropy to the angular dependences of spin rectification effect in single crystal CoFe film
Abstract The angular dependence of the microwave-driven spin rectification (SR) effect in single crystalline Co0.5Fe0.5alloy film is systematically investigated. Due to the strong current-orientation dependent anisotropic magnetoresistance (AMR), the SR effects in CoFe film strongly deviate from the ordinary sin 2φMcosφMrelation withφMdefined as the magnetization angle away from the current. A giant Gilbert damping anisotropy in the CoFe film with a maximum–minimum ratio of 520% is observed, which can impose a strong anisotropy onto magnetic susceptibility. The observed unusual angular dependence can be well explained by the theory including current-orientation dependent AMR and anisotropic magnetic susceptibility. Our work also suggests that the strong current-orientation dependent AMR in single crystalline CoFe film could exist up to the gigahertz frequency range.  more » « less
Award ID(s):
1941426 1933301
PAR ID:
10303692
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
22
Issue:
9
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 093047
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Ruddlesden‐Popper 5diridate Sr2IrO4is an antiferromagnetic Mott insulator with the electronic, magnetic, and structural properties highly intertwined. Voltage control of its magnetic state is of intense fundmenatal and technological interest but remains to be demonstrated. Here, the tuning of magnetotransport properties in 5.2 nm Sr2IrO4via interfacial ferroelectric PbZr0.2Ti0.8O3is reported. The conductance of the epitaxial PbZr0.2Ti0.8O3/Sr2IrO4heterostructure exhibits ln(T) behavior that is characteristic of 2D correlated metal, in sharp contrast to the thermally activated behavior followed by 3D variable range hopping observed in single‐layer Sr2IrO4films. Switching PbZr0.2Ti0.8O3polarization induces nonvolatile, reversible resistance modulation in Sr2IrO4. At low temperatures, the in‐plane magnetoresisance in the heterostructure transitions from positive to negative at high magnetic fields, opposite to the field dependence in single‐layer Sr2IrO4. In the polarization down state, the out‐of‐plane anisotropic magnetoresistanceRAMRexhibits sinusoidal angular dependence, with a 90° phase shift below 20 K. For the polarization up state, unusual multi‐level resistance pinning appears inRAMRbelow 30 K, pointing to enhanced magnetocrystalline anisotropy. The work sheds new light on the intriguing interplay of interface lattice coupling, charge doping, magnetoelastic effect, and possible incipient ferromagnetism in Sr2IrO4, facilitating the functional design of its electronic and material properties. 
    more » « less
  2. Abstract Some rock and soil samples exhibit significant loss of magnetic susceptibility (χ) with increasing applied field amplitude even at relatively low (10–100s of A/m) fields, a behavior which remains unexplained. Exceptionally strong negative field‐dependence of susceptibility (χHD) is present in sandstones and altered intermediate‐felsic igneous rocks in several cores from the northeastern Oklahoma subsurface. These same rocks also show elevated frequency‐dependence of susceptibility (χFD), with reasonable correlation ofχHDtoχFD, and frequency‐dependentχHD. Results from multiple characterization methods indicate that strongly negativeχHDin these rocks is linked to a yet‐unidentified phase which begins the approach to magnetic saturation in low fields (<1 mT/800 A/m), shows elevatedχFDto low temperatures, is unstable at high temperatures, possesses significant anisotropy of magnetic susceptibility, and becomes paramagnetic above ∼83°C. Clear associations with fluid alteration features indicate that this material may be highly relevant to rock alteration, diagenetic, and environmental studies. 
    more » « less
  3. Abstract Glasses are generally assumed to be isotropic and there are no literature reports of elastic anisotropy for molecular glasses. However, as glasses formed by physical vapor deposition can be structurally anisotropic, it is of interest to investigate the elastic anisotropy in these materials. Micro‐Brillouin light spectroscopy is used in several experimental geometries to determine the elastic stiffness tensors of three glass films of itraconazole vapor‐deposited at substrate temperatures (Tsub) of 330, 315, and 290 K, respectively. Significant elastic anisotropy is observed and, in these glasses, the elastic anisotropy shows a strong correlation with the molecular orientation. The out‐of‐plane and in‐plane Young's moduli of the highTsub(330 K) sample, which features a predominantly vertical molecular orientation, exhibit a high anisotropy ratio of 2.2. The observed elastic anisotropy is much larger than those previously observed in liquid crystals and even many crystalline solids. 
    more » « less
  4. null (Ed.)
    Abstract Two-dimensional (2D) material of silicon phosphide (SiP) has recently been shown as a promising optical material with large band gap, fast photoresponse and strong anisotropy. However, the nonlinear optical properties of 2D SiP have not been investigated yet. Here, the thickness-dependent in-plane anisotropic third-harmonic generation (THG) from the mechanically exfoliated 2D layered SiP flakes is reported. The crystal orientation of the SiP flake is determined by the angle-resolved polarized Raman spectroscopy. The angular dependence of the THG emission with respect to the incident linear polarization is found to be strongly anisotropic with the two-fold polarization dependence pattern. Furthermore, the effect of the SiP flake thickness on the THG power is analyzed. 
    more » « less
  5. Abstract In this work, we provide clear evidence of magnetic anisotropy in the local orbital moment of a molecular thin film based on the SCO complex [Fe(H2B(pz)2)2(bipy)] (pz = pyrazol−1−yl, bipy = 2,2′−bipyridine). Field dependent x-ray magnetic circular dichroism measurements indicate that the magnetic easy axis for the orbital moment is along the surface normal direction. Along with the presence of a critical field, our observation points to the existence of an anisotropic energy barrier in the high-spin state. The estimated nonzero coupling constant of ∼2.47 × 10−5eV molecule−1indicates that the observed magnetocrystalline anisotropy is mostly due to spin–orbit coupling. The spin- and orbital-component anisotropies are determined to be 30.9 and 5.04 meV molecule−1, respectively. Furthermore, the estimatedgfactor in the range of 2.2–2.45 is consistent with the expected values. This work has paved the way for an understanding of the spin-state-switching mechanism in the presence of magnetic perturbations. 
    more » « less