skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Ferroelectric Control of Anisotropic Magnetoresistance in Ultrathin Sr 2 IrO 4 Films toward 2D Metallic Limit
Abstract The Ruddlesden‐Popper 5diridate Sr2IrO4is an antiferromagnetic Mott insulator with the electronic, magnetic, and structural properties highly intertwined. Voltage control of its magnetic state is of intense fundmenatal and technological interest but remains to be demonstrated. Here, the tuning of magnetotransport properties in 5.2 nm Sr2IrO4via interfacial ferroelectric PbZr0.2Ti0.8O3is reported. The conductance of the epitaxial PbZr0.2Ti0.8O3/Sr2IrO4heterostructure exhibits ln(T) behavior that is characteristic of 2D correlated metal, in sharp contrast to the thermally activated behavior followed by 3D variable range hopping observed in single‐layer Sr2IrO4films. Switching PbZr0.2Ti0.8O3polarization induces nonvolatile, reversible resistance modulation in Sr2IrO4. At low temperatures, the in‐plane magnetoresisance in the heterostructure transitions from positive to negative at high magnetic fields, opposite to the field dependence in single‐layer Sr2IrO4. In the polarization down state, the out‐of‐plane anisotropic magnetoresistanceRAMRexhibits sinusoidal angular dependence, with a 90° phase shift below 20 K. For the polarization up state, unusual multi‐level resistance pinning appears inRAMRbelow 30 K, pointing to enhanced magnetocrystalline anisotropy. The work sheds new light on the intriguing interplay of interface lattice coupling, charge doping, magnetoelastic effect, and possible incipient ferromagnetism in Sr2IrO4, facilitating the functional design of its electronic and material properties.  more » « less
Award ID(s):
2044049
PAR ID:
10589523
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Physics Research
Volume:
4
Issue:
8
ISSN:
2751-1200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ability to produce atomically precise, artificial oxide heterostructures allows for the possibility of producing exotic phases and enhanced susceptibilities not found in parent materials. Typical ferroelectric materials either exhibit large saturation polarization away from a phase boundary or large dielectric susceptibility near a phase boundary. Both large ferroelectric polarization and dielectric permittivity are attained wherein fully epitaxial (PbZr0.8Ti0.2O3)n/(PbZr0.4Ti0.6O3)2n(n= 2, 4, 6, 8, 16 unit cells) superlattices are produced such that the overall film chemistry is at the morphotropic phase boundary, but constitutive layers are not. Long‐ (n≥ 6) and short‐period (n= 2) superlattices reveal large ferroelectric saturation polarization (Ps= 64 µC cm−2) and small dielectric permittivity (εr≈ 400 at 10 kHz). Intermediate‐period (n= 4) superlattices, however, exhibit both large ferroelectric saturation polarization (Ps= 64 µC cm−2) and dielectric permittivity (εr= 776 at 10 kHz). First‐order reversal curve analysis reveals the presence of switching distributions for each parent layer and a third, interfacial layer wherein superlattice periodicity modulates the volume fraction of each switching distribution and thus the overall material response. This reveals that deterministic creation of artificial superlattices is an effective pathway for designing materials with enhanced responses to applied bias. 
    more » « less
  2. Abstract Two‐dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS2exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS2with epitaxial PbZr0.2Ti0.8O3(PZT) thin films and free‐standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in‐operando programming of nonlinear light polarization. The interfacial coupling of the MoS2polar axis with either the out‐of‐plane polar domains of PZT or the in‐plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory. This study provides a new material platform that enables reconfigurable design of light polarization at the nanoscale, paving the path for developing novel optical information processing, smart light modulators, and integrated photonic circuits. 
    more » « less
  3. The significant role of perovskite defect chemistry through A-site doping of strontium titanate with lanthanum for CO 2 electrolysis properties is demonstrated. Here we present a dual strategy of A-site deficiency and promoting adsorption/activation by making use of redox active dopants such as Mn/Cr linked to oxygen vacancies to facilitate CO 2 reduction at perovskite titanate cathode surfaces. Solid oxide electrolysers based on oxygen-excess La 0.2 Sr 0.8 Ti 0.9 Mn(Cr) 0.1 O 3+δ , A-site deficient (La 0.2 Sr 0.8 ) 0.9 Ti 0.9 Mn(Cr) 0.1 O 3−δ and undoped La 0.2 Sr 0.8 Ti 1.0 O 3+δ cathodes are evaluated. In situ infrared spectroscopy reveals that the adsorbed and activated CO 2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The double strategy leads to optimal performance being observed after 100 h of high-temperature operation and 3 redox cycles, suggesting a promising cathode material for CO 2 electrolysis. 
    more » « less
  4. Abstract The superior size and power scaling potential of ferroelectric-gated Mott transistors makes them promising building blocks for developing energy-efficient memory and logic applications in the post-Moore’s Law era. The close to metallic carrier density in the Mott channel, however, imposes the bottleneck for achieving substantial field effect modulation via a solid-state gate. Previous studies have focused on optimizing the thickness, charge mobility, and carrier density of single-layer correlated channels, which have only led to moderate resistance switching at room temperature. Here, we report a record high nonvolatile resistance switching ratio of 38,440% at 300 K in a prototype Mott transistor consisting of a ferroelectric PbZr0.2Ti0.8O3gate and anRNiO3(R: rare earth)/La0.67Sr0.33MnO3composite channel. The ultrathin La0.67Sr0.33MnO3buffer layer not only tailors the carrier density profile inRNiO3through interfacial charge transfer, as corroborated by first-principles calculations, but also provides an extended screening layer that reduces the depolarization effect in the ferroelectric gate. Our study points to an effective material strategy for the functional design of complex oxide heterointerfaces that harnesses the competing roles of charge in field effect screening and ferroelectric depolarization effects. 
    more » « less
  5. The 5drare Earth iridate is an intriguing material with exhibiting exotic electronic and magnetic phases due to spin‐orbit coupled states. Ternary iridium oxidesLn3IrO7contain an unusual Ir5+(5d4) system, which remain a subject of active research. Fabricating epitaxialLn3IrO7films is challenging due to substrate compatibility, but it offers a valuable platform to explore electronic and magnetic behaviors under reduced dimensionality and substrate interactions, revealing novel phenomena based on Ir5+(5d4). In this regard, this demonstrates that Pr3IrO7with its highly anisotropic orthorhombic structure can be epitaxially grown on a cubic (111)‐oriented yttrium‐stabilized ZrO2(YSZ) substrate. Pr3IrO7film exhibits six epitaxial domains, where the (220) and (202) planes aligning epitaxially to YSZ (111) with the threefold symmetry. This diverse domain configuration in Pr3IrO7film leads to unique magnetic properties, exhibiting spin‐glass‐like behavior. Pr3IrO7thin film offers a platform for exploring unconventional magnetic states, and their successful heteroepitaxy on YSZ substrates opens new avenues for discovering novel physical phenomena. 
    more » « less